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1. INTRODUCTION
1.1 Purpose and scope

This document is the final report of the project “Toward development of a virtual distributed
control system (Phase II)”. The report describes an 18-month effort to develop a simulation and
visualization tool that will allow comprehensive analysis of shipboard distributed control networks.

We describe the simulation tool that emerged from the effort. The tool is designed to assist
engineers who build distributed architectures for coordinated control of multiple devices and
subsystems. While not limited to any application type, our designs target shipboard distributed
control applications that use LONWORKS.

In order to design a distributed control architecture, engineers typically develop goals expressed as
performance indices, and draw block diagrams of potential architectures. These potential
architectures require specification of communication and interconnection networks and listings of
sensors and actuators, including their locations and types (e.g., PID, bang-bang). Next, design tools
such as LonMaker and NodeBuilder are engaged to assist in realization.

In the absence of analytical and simulation tools, each potential architecture needs to be realized
and tested “live” with the actual hardware. This approach is expensive, slow, inflexible, and may
miss critical limitations if certain modes are not excited during experimentation. The objective of
this project was to provide a computerized simulation tool, which would allow inexpensive
automated comparison of design alternatives and analysis of different designs without physical
implementation. The general input used by our tool is the block diagrams of the proposed system,
and the source code planned for the sensory and control devices. The user also supplies: the
duration of the planned simulation, parameters of the desired communication service (e.g.,
acknowledge receipt of packets), and sampling rates. The output is live and historical statistics of
the communication infrastructure (e.g., packet loss, bandwidth utilization, channel throughput, and
channel capacity).

Using our software, users can assess future performance of the design’s communication
infrastructure, identity bottlenecks and contingencies, and estimate available bandwidths and
throughputs. This assessment is provided at two levels of abstractions: the first (Communication
Simulator) is intended for preliminary quick block diagram design; the second (Network Simulator)
is intended for detailed simulation of a fully instrumented network.



1.2 Organization of the document

Chapter 1 provides definition of scope and purpose, as well as a summary of goals and
achievements.

Chapter 2 provides a development review.
Chapter 3 and 4 provide a detailed technical description of the Network Simulator.

Chapter 5 describes the Network Simulator computerized design tool (for which a User Manual is
provided in Appendix III).

Chapter 6 describes validation experiments.

Chapter 7 describes the Communication Simulator.

Chapter 8 states goals for Phase III of the project.

Validations of the various tools developed in the course of this project are available in the following
chapters: Chapter 3 - section 3.7, resistor/fan test platform; Chapter 6, Chilled Water Reduced-scale

Advanced Demonstrator; Chapter 7 — section 7.4, validation of communication parameters.

Auxiliary materials and additional explanations were gathered in the appendices. Appendix III is
the User Manual for the Network Simulator.



1.3 Objectives and achievements

Component-level distributed control systems are comprised of sensing and computation nodes,
distributed throughout a plant (such as a ship) and connected peer-to-peer through device-level
control networks. These decentralized architectures hold promise in large-scale shipboard
automation, because they often exhibit increased survivability as well as graceful degradation in the
face of component failure. However, decentralization by itself does not guarantee survivability,
and new impediments such as communication delays, increased processing overhead, and
unexpected interdependencies may even reduce survivability for some decentralized control
architectures. The main objective of this project was to develop a tool that would predict how
decentralized control systems perform, and would allow designers and users to evaluate and
compare competing implementations. We seek an automated analysis, simulation, and visualization
device that incorporates the dynamics of the control network into the simulation model and
provides realistic prediction of performance and tradeoffs. The device should achieve these goals at
a reasonable investment in hardware and computation power.

The objective of Phase I of this effort (2001-2) was to demonstrate feasibility of this approach,
through the development of a functional, reduced-capability simulation tool. The tool was to
simulate a distributed control system consisting of a small number of nodes (up to 10) that share a
common communication channel, and to validate this simulation with a physical test plant. We
focused our effort on the LonTalk protocol, pioneered by the Echelon Corporation. We chose this
protocol because it is gaining acceptance within the Navy research community as the protocol of
choice for Naval applications.

The objective of Phase II was to increase the dimension of the plants that can be simulated to about
100, and to provide a tool that Navy engineers can use when considering distributed control
architectures. The effort resulted in two automated tools: a Communication Simulator and a
Network Simulator. The Communication Simulator (Chapter 7) simulates a network at a high level
of abstraction. It assumes that communication requirements for sensors and actuators are known,
and proceeds to simulate the resulting communication network and identity the main operational
parameters. The Communication Simulator is quick, but it requires significant prior information. It
is suitable for the initial phases of the design, for demonstration of feasibility, and for basic
comparisons of competing architectures.

The Network Simulator (Chapter 4) is suitable for the second phase of the design, when the sensors
and actuators were selected, and overall performance of the fully-instrumented system is sought. It
runs, in parallel, the sensor/actuator suite and the communication infrastructure. The Network
Simulator requires less prior information, but is slower and more complex when compared with the
Communications Simulator. It is suitable for performance prediction of the final design and for
sensitivity studies, but less suitable for quick comparisons of basic block diagrams.



2. DEVELOPMENT REVIEW (Summary)

In phase I of the VDCS project, we developed and validated a software tool to simulate small-scale
distributed control systems that communicate using the LonTalk protocol. The tool incorporated
the dynamics of the underlying communications network into a composite simulation. We applied
the tool to study problems consisting of less than ten distributed control nodes.

In phase II of the project, our primary objective was to provide a fully automated software tool to
handle medium-scale distributed control systems (i.e., approximately 100 computing nodes). To
this end, we developed processing and visualization modules for architectures with large numbers
of nodes. This objective required the development of automated tools that convert LONWORKS
device-level programs, network configuration data, and plant simulation code into a form that
allows automated and reliable performance prediction and analysis.

Phase II of the project resulted in two major products: a Network Simulator and a Communication
Simulator. Both simulators assume stable operation of local controllers and provide users with a
detailed simulation and prediction of communication performance of the distributed control
architecture. The differences between the simulators are in the level of abstraction.

The Network Simulator (Chapter 4) uses source code (written in Neuron C) for the control devices
in order to determine the communication parameters, and proceeds to simulate the emerging
communication scheme as the controllers operate. The Communication Simulator (Chapter 5)
requires prior knowledge of the communication parameters and does not run the control algorithm
during the simulation. As a result it is faster than the network simulator, though of courses it
requires much more information. In the design process, the Communication Simulator should be
used first, with estimated parameters for the planned devices in the various nodes. Once
satisfactory performance was established, the Network Simulator should be used, with the detailed
design of the devices at each node.

In addition to the two simulators, the following key milestones were achieved:

2.1 We developed tools to extract network configuration information automatically and directly
from a LONWORKS Network Services (LNS) database. This database is created by the
LonMaker utility commonly used by engineers to configure a LONWORKS system. Engineers
use the database to specify and store the communication network architecture, and
mathematical definitions of components are extracted and installed in the architecture in order
to facilitate simulation and testing. By interpreting the information in the database, a user would
only need to enter information once and will not need to learn how to use additional design
tools. We developed an LNS extraction tool that retrieves the network topology and
configuration information directly from LNS database. (see Appendix IV)

2.2 We developed a means to integrate third-party simulation and visualization tools with the
VDCS platform (e.g., Wonderware InTouch, Flowmaster, LabView). The VDCS platform
provides a high-fidelity simulation of LonTalk network traffic.

2.3 We devised a means to introduce network failures into a VDCS simulation. Specifically,
VDCS enables users to test system performance in the presence of (1) device failures, (2)
channel failures, and/or (3) router failures. We developed a simple user-interface to allow an
engineer to identify a device, router, or network link that is damaged while a simulation is in
progress.
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2.4 We added simulation support for routers and bridges'. As distributed control systems grow in
size, design engineers often use routers and bridges to group computing nodes into sub-
networks (each sub-network has its own channel). The election to segment communication
traffic is not only a good design practice; it is often dictated by communication protocols that
physically limit the number of nodes that can share the same network channel (in LONWORKS
the limit is 64 nodes, in FairNET the limit is 32 nodes). = The VDCS simulation platform
supports both configured and learning modes of LonTalk routers.

2.5 We developed improved analysis tools for user to assess the performance of designs. These
analysis tools provide all of the performance data that can be obtained by using a protocol
analyzer on a real-world system. Moreover, the tools provide several useful performance
metrics that cannot be computed by any other means (protocol analyzers do not provide this
information).

2.6 We developed a design tool to simulate network channel traffic and evaluate the network
messaging schemes of a preliminary LONWORKS network design. The idea is to use this tool
during the early stages of a distributed control network design process.

2.7 We incorporated Component Object Modeling (COM) technology into the VDCS platform.
The primary benefit of using COM is that it provides a mechanism to create standardized
interfaces between applications. This is useful to integrate VDCS with third-party simulation
software for physical systems (e.g., a fluid system). We designed a testing environment that
supports both simulation generation and execution. This effort required restructuring of the
VDCS software architecture by developing COM interfaces and components to isolate the user
application from the network simulation and graphical user interface (GUI). (see Appendix V)

' A bridge between two sub-networks passes all communication traffic from each sub-network to the other
‘blindly’. A router between sub-networks A and B is more discriminating: it passes message packets from
sub-network A to sub-network B only if those packets are addressed to a node on sub-network B (or to a node
on another sub-network connected, directly or indirectly, to sub-network B.)

2 LonTalk routers can operate in one of two modes: (i) configured or (ii) learning. In configured mode, the
router is fully informed about the overall network architecture. In the learning mode, the router is not
informed about the network architecture and must develop a map of the network by tracking message packets.
As it learns, the router may pass message packets from one sub-network to another unnecessarily, thereby
increasing bandwidth consumption.




3. SIMULATION GENERATOR

In this chapter we describe a pre-processing device that prepares data for the Network Simulator
(Chapter 4). The VDCS test platform separates the network simulation process into two steps: (1)
preparing the network simulation to represent a specific network design to be simulated, and (2)
performing the network simulation. Accordingly, VDCS includes a Simulation Generator and a
Network Simulator. The Simulation Generator retrieves the network design from the LNS database
and the device-level user applications. It then interprets the network definition and builds the
network simulation files. Based on these files, the Network Simulator creates a network simulation
and runs the simulation. This chapter describes the simulation generator architecture.

3.1 Simulation Generator Architecture

The Simulation Generator is an automation tool that creates a series of files that define a network
simulation. It extracts the network definitions from the LNS database and stores these definitions
in a number of simulation files that are used by other VDCS components. Some of the files are
loaded directly by the Network Simulator to establish the simulation. The Simulation Generator
feeds the other files to a third-party compiler that creates the device and plant simulation dynamic
link libraries (DLLs). These DLLs are dynamically linked by the Network Simulator to execute the
simulation.

Simulation Ge

LonWorks Design

NC Sources

Neuron C Source
Translator

Network Simulation Network
LNS Network Configuration | Definition Simulation
Tool Generator | Definition

Database

| Device/Plant
1 Interface
Definition

Plant Simulation
Plant Simulation Entry and 10
Definition

Plant Source |
Converter

Figure 1 Simulation Generator

Figure 1 shows the functional block diagram of the Simulation Generator. Inputs to the Simulation
Generator include the network design created in LonMaker and NodeBuilder’, and a user-defined
plant simulation file (Appendix I specifies the format for this file). The Simulation Generator

* Echelon Company, http://www.echelon.com/products/development/nodebuilder/default.htm
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consists of a Network Configuration Tool, a Neuron-C Source Translator, a Device/Plant Interface
Definition Tool, a Plant Simulation Entry and I/O Definition Tool, a Plant Source Converter, and a
Simulation Definition Generator.

The Neuron C Source Translator interprets the Neuron C code of the user applications into an
object-oriented C-++ form that can be interpreted by any third party compiler. We developed an
Application Program Interface (API) to support the most often-used Neuron C functions. Appendix
IIT provides a template that the Neuron-C code must adhere to in order to be understood by the
Source Translator. The output of the Source Translator is a set of files that represent the user
application simulation code. These files are compiled by a third-party tool to create a user
application simulation DLL module.

The Plant Source Converter converts the plant application code into a set of object-oriented C++
files. These files are used to build a plant application simulation DLL module. (The plant
application code simulates the behavior of the physical systems and processes that the distributed
control system is regulating.)

The Network Configuration Tool accesses the LNS database and extracts information about all of
the available network configurations that the user has defined in LonMaker. Once the user chooses
the specific network to be simulated, the tool explores the LNS database for the network topology
and configuration information.  The specific information gathered in this extraction process
includes the network name, subsystem number and names, channel numbers, channel name,
number of devices and routers, the device name, unique node ID, domain ID, subnet ID, node ID,
application template, device network interface, router name, router priority property, router mode,
NV definitions, bindings, etc. The information is stored in a simulation data structure referred by
the Simulation Definition Generator and Device/Plant Interface Definition module.

The Plant Simulation Entry and /O Definition component provides the user with the authority to
specify the plant simulation file and to define the plant I/O signals. The Device/Plant Interface
Definition provides an interface for the user to bind plant I/O signals with device I/O signals. The
Simulation Definition Generator combines and processes the results from the other components to
generate the simulation files and network configuration files. The architecture of the Simulation
Definition Generator is shown in Figure 2.

VDCS uses the Microsoft Visual C++ (MS VC++) Compiler to build a device application COM
component and a plant application COM component based on the Network Simulation Definition
files. VDCS creates a MS VC++ project file and launches the compiler to build the target files. If
the simulation modules are built successfully, the Simulation Generator will exit and the Network
Simulator may begin to execute the simulation.

When building a network simulation, the Simulation Generator gathers the following network
configuration information: the network topology, the channel and device configuration, the network
connections, and the individual device applications. This information constitutes the network
definition. To assist with this network definition, a network configuration tool was developed. It is
available as an automated tool that generates the entire network simulation from the original design,
referring to the LNS database, network application source, and plant simulation code.

The network design procedure using the simulation generator is explained below in detail, using an

example, namely the Resistor / Fan Test[S]. The simulation generator is customized in our Design
tool (Chapter 5); (A simplified version is integrated into the design tool software package).
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Figure 2 Simulation Definition Generation

3.2 Network Device Application Translation

The Neuron C Source Translator translates the device source code into the form specified by the
device application definition. It also derives the network interface of a network device and the
event list that will be checked by the scheduler. The Neuron C Source Translator has three function
blocks as shown in Figure 3. These are Device Application Translation, Network Interface and
Event Definition, and NV Format Definition.

The Application Translation module converts all the device application source code into a C++
format that complies with the VDCS device application definition. The application source
translation attempts to maintain the characteristics of the Neuron C (NC) language [4], and
similarity to the original code, to preserve code readability. However, functions and variables
defined in the device application definition are created according to the NC source code. The
device application definition is depicted in Appendix L

The device source code is not in the LNS database. However, the directory of each device
application .XIF file is recorded in the LNS database. The .XIF file is generated based on the
device application source code and is usually stored in a path that has a fixed relation to the source
code. Base on this fact, the source code is located in the Network Configuration Tool for
translation.

AR Network
Neuron C Source Network lnterfaEe and Event [~ Application
Definition s
Definition

NV Format Definition

Figure 3 Neuron C Source Translator Architecture
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The Network Interface and Event Definition module create two files: Interface. fmt and
Event_NV. fmt. Interface.fmt holds the network interface information of each device; and
Event_NV. fmt keeps the lists of network variable events of network device templates. The NV
Format Definition builds the NV format APIs for the NV configuration tool according to the SNVT
format file and user defined format file (See www.lonmark.org/products/snvtfile.htm). The

network variable configuration is described in section 3.5. The resulting files from these functions
make up the Network Application Definition, which are listed in Table 1.

Table 1 Network Application Definition Files

include. cpp Included files of device applications

DeviceAppgm. h | Device application declaration

DeviceAppgm. cpp | Device application definition

Interface. fmt Device interface

Event_NV. fmt List of NV event of each device template

NVfmt. h NV configuration API declaration

NVfmt. cpp NV configuration API definition

Additionally, a special code format is formulated for the network service device application, so that
the user can write an application code for the network service device in the defined format to
simulate a network service device. The code may be developed in NC or C with the code mirroring
the functions of the network service device. The definition of the network service device is
recorded the same way as a regular device in the configuration files.

3.3 Network Configuration Tool

Most of the network configuration information is in the LONWORKS Network Services (LNS)
database. This database is created by the LonMaker utility commonly used by engineers to
configure a LONWORKS system. By interpreting the information in the database, a method to
extract the network configuration information directly from a LNS database is developed. Network
information retrieval is performed by setting the LNS Database to “offnet” mode. The retrieved
network information is processed to form the network definition. Figure 4, shows the architecture
and function blocks of the Network Configuration Tool.
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The LNS Database Extractor accesses the LNS database specified by the user to search for the
network topology and configuration information. The information gathered in the extraction
includes the channel numbers, channel name, number of devices and routers, the device name,
unique node ID, subnet ID, node ID, application template, device network interface, router name,
router priority property, router mode, NV definitions, and bindings. The information is stored in a
simulation data structure used by other function blocks.

While the LNS extraction tool can access most configuration information from the LNS database,
certain data can not be obtained directly. These include device address tables and router
SJorwarding tables, and the Neuron-C source files. Fortunately, we are able to determine the
location of the application source file based on the path of device application .XIF file as described
in section 3.2. We also developed our own algorithms to generate these tables based on the
network design rule and implications in the available network configurations. The software
rebuilds these tables, including the router subnet and group forwarding tables. The definitions of
these tables are provided in section 3.4.

The Network Configuration Tool produces the Network Definition that consists of the list of
network configuration files shown in Table 2. During the network simulation initialization, the
Network Simulator scans these files. The network simulation objects are created according to the
network. fmt file. The configuration specified in node. fmt is implemented in each device
application object, and the network variables are defined according to the nv. fmt file. The node
IDs are loaded for each device in both the network simulation in the Network Simulator and the
VDCS user applications. The program IDs are loaded in the user application to determine the
appropriate applications for each network devices. The I/O connections are also configured at the
same time according to io. x1s. The I/O connection implementation is described in section 3.6.

Table 2 Network Configuration Files

File Name Description

network. fmt | Network topology

node. fmt Network device configurations
nv. fmt Network variable definitions
id. fmt Network device Ids
io. x1s IO configuration of the control plant and

the network devices
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34 Address Table and Router Forwarding Tables

The address table defines the network destination address for implicitly addressed messages and
network variables of a network device. Each entry of the table represents an address. The
maximum number of address table entries is 15. The definition of the address table can be found in
Motorola LONWORKS Technology Device Data book. Since the configuration of the address table
is not available from the LNS database, the address table is built based on implied network variable
connections.

A message sent between two network devices is treated as a subnet/node-addressing message. The
source and destination address may be obtained from the two devices containing the network
variables. For subnet/node addressing, one address table entry is used in the source device to save
the address of the destination device. Only one address table entry is used if there are one or more
variable bindings between the two devices.

A message sent to more than one network device is considered a group message. Every device in a
group will receive this message. The Group ID identifies this group uniquely. Any device in the
group is given an index starting from 0. Each device in the group has an address table entry to
identify its membership in the group by saving the addressing of the group and the device index.

A router uses forwarding tables to determine whether to forward an incoming message to the
destination channel or drop it. Messages generally fall into two groups according to their
addressing: subnet/node message or group message. Accordingly, there are two forwarding tables:
subnet forwarding table and group forwarding table. The definition of the router tables and
construction of these tables are explained in section 4.6.2.

3.5 Network Variable Configuration and Format Files

Occasionally the value of a network variable in a network device needs to be modified in order to
make changes to the device application. The LonMaker Network Variable Browser provides this
feature, called NV configuration. VDCS also provides a network variable configuration tool. This
tool is able to check the current value of a network variable and modify it. It is necessary for the
configuration tool to browse a network variable and correctly display the current value in the
defined format.

To browse a network variable, the interface. fmt file is used as a reference to locate a network
variable defined in a device. A hash table is built for looking up the data type of a network
variable. The NV configuration tool first obtains the index to the network variable by checking the
interface. fmt file, and then gets the network variable data type by looking up the hash table with
the network variable index.

To display the network variable correctly according to its data type, the display format must be
defined. Format files are used to determine these formats. A format file for the standard network
variable type is defined and available in LonMaker. A modified version of the same file is used in
VDCS. Meanwhile, a user-defined file may also be provided to support formats for user-defined
data type. Functions are developed to read the network variable value and present it into strings in
the defined format. These functions also convert a new value from user input based on the format
and update the network variable.




3.6 Control Plant Simulation Configuration

The plant simulation configuration defines the plant application and the connections between the
plant I/O and network device I/O. The plant simulation configuration includes four steps: plant

application simulation entry, I/O definition, network/plant interface definition, and plant simulation
translation. ‘

Plant Simulation Entry

The plant application is assumed to be simulated in iterations that the internal states of a plant are
changed from one iteration to the next. The plant simulation code specifies the one step simulation
of the plant at a given sampling period. During this step, the user specifies the path of a plant
simulation file, as well as the sampling period. The plant simulation information is stored in the
network definition data structure. The definition of the plant application simulation file is described
in Appendix I Device and Plant Application Definition for Code Generation Automation.

Plant I/O definition

A plant simulation has a set of state variables, some of which are used for input and output of the
plant simulation. However the simulation file does not define the plant input and output. The
configuration tool scans the plant simulation file and lists all the defined variables in the plant
simulation code. A GUI is introduced to the configuration tool for the user to define the output and
input variables.

Network/Plant Interface Definition

The network/plant interface defines the connection of the network hardware 1/0 and the plant I/O
and determines the data transition. A connection tool is developed for the user to connect the I/Os.
The simulation definition generator generates a connection configuration file io. x1s containing the
/O definition and the connection definition. As described, the network simulation interface
functions as a buffer that connects both the device I/O and plant I/O to exchange data.

Plant Simulation Translation

The last step is to build the simulation project. In building the plant simulation project, the plant
simulation file is translated into a format that complies with the plant simulation definition and put
into file PlantAppgm. h and PlanAppgm. cpp file. The I/O definition specifies the connection of the
plant I/O and the network simulation interfaces buffers. The I/O definition for the plant simulation
part is embedded into the application code. The I/O definition of network devices is similarly
defined in device simulation. The I/O API functions are presented to encapsulate the
implementation of the I/O connections.



3.7 Using the Simulation Generator: A Step-By-Step Example

The resistor/fan physical test platform was developed in Phase I of the VDCS Project to validate the
tool. In Phase I, we manually translated all of the Neuron-C code and manually re-created the
network configuration in a form that VDCS could understand. With the availability of the
simulation generation tools developed under Phase II, we can now perform this step automatically.
We provide below a step-by-step guide to using the automated tools to generate a simulation of the
resistor-fan system. A detailed description of the simulated fan-resistor system is provided in
Chapter 4 of the Phase I final report [7].

There are three major steps to build a network simulation. The first step is to design the network
using a network design tool like LonMaker. The second step is to design the plant simulation. The
third step is to build the simulation using the simulation code generator. After generating the
simulation code, the network simulation is able to run using the simulation platform. Each step is
described in detail below.

Step 1. Design the Resistor Fan Network.

(1) LonMaker was used to design the Resistor_Fan network as shown in Figure 5. We set the
network to be offnet, since there is no hardware attached.

Figure 5 Open LonMaker to Design Network
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(2) Define the Network Device Applications. Program the Neuron C device applications for the
temperature module and the fan control module in LonBuilder. Figure 6 shows the Neuron C
code that implemented the bang-bang controllers used to regulate the fan-resistor network.

Echelon NodeBuilder 3.0 - 2 RE\re_fan\source_files\temp_mod.nc

All Targets

B-C3Project Resistor_Fan'
El = Device Templates

/

/ timsr functicns

o0id start_the sample_timer(void);

/¢ communication functions

E-{JHardware Templates 0id send enalog_input(void):

/

/ Begirning of Program Tasks

when {reset)

start_the_sample timer();

}

prioricy when (time_to_sample)

Figure 6 Program Device Application Program in LonBuilder

(3) Use LonMaker to design the Resistor_Fan network, define network variables, and bind network
variables, as shown in Figure 7.
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Figure 7 Design the Resistor Fan Network Using LonMaker

Step 2. Design the Plant Simulation.

Design the plant simulation based on the plant physical model. Program the plant simulation using
any program editor. In Figure 8 the Crimson Editor is used to program the application. The plant
simulation code should adhere to the format defined in Appendix I. The main() (see
www.crimsoneditor.com) function should execute one step of the plant simulation code.
Subroutines are allowed, but no special header files should be included.
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kLl//Numerical solution for Res-Fan mathsmatical model ,set_num is the index of the res-fan set , set_nu
ghidouble Kutta_method{double previous_temp,double fan_volt,double res_volt,int set_num);
g¥3// Res-Fan model

kkJdouble simulator_temp(double previous_temp,double fan_volt,double res_volt,int set_num);
14

15

glJdouble temp_ochan{3];

k¥gdouble fan_ichan[3];

18

U1 fan_ichan[0]=0;

pAdfan_ichan[1]=0;

FERfan _ichanf2(1=0;

22
bx1//The voltage supplied to the resistor

idouble resistor_uvolt=15.0;

p23// The voltage for the Fan by using bang-bang controller

klJdouble Fan_volt=2%.80; . %
27 5
:Mriidouble Room_temp=23.0; //Room temperature in 'C :3‘
eaddouble h_coeff=0.05; /#The time_step for the R_K method to caculate once, &
SElddouble time_interval=5.8; /7 Sample-rate , it should be equal to nx*h_coeff, where n is an integ;,
! kalint temp_state{3]1={9,9,8}; /¢ Need to be used for the compensation of surface temperature chang
EEFAFILE *pfile=NULL; /7 Write the data to a file.
i 33

an /7 The array to store the actual volts supplied to the fans .
35 double actual_fan_volt[3]={0,0,0};

36 // double temp_loop[3]={Room_temp,Room_temp,Room_temp};

a7 double temp_loop[3]={24.8491,22.7871,24.3};

38 int set_index-0;
| 39 int set_index2=0; &
| a8 //Generate the simelated temperature for smartcontrel theugh SCB-68
w1 //temperture generator for set A

42

43

4n INHHHHHHHHHHHHHH/!/I////H/IH/IHH/HHHIH/I/HHHHHHI!HHHHHIIHHH/!///;
LY/ /Usaqe program_nanme.exe Room_temperature {if you assume the initial temperatures of the resisto

Figure 8 Program the Plant Simulation Code

Step 3. Build Simulation using LonWork Network Simulation Generator.

There are three steps to build the simulation code using the simulation generator. The first step is
LNS database extraction. The second step is plant simulation definition. The third step is network
and plant interface definition. After these three steps are completed, the generator will build the
simulation code. To begin, open the simulation generator; a dialog as shown in Figure 9 will be
displayed.
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Figure 9 LonWork Simulation Generator Main Dialog

(1) Select the Network.

Click the Next button and the Open Network Database dialog will appear as shown in Figure 10.
Select the Resistor_Fan network database that you created and select the correct network interface.
Press OK to extract the network database. If a format file is defined, specify the path of the file in
the Format File Path. Since no format file is used in this case, this entry is left blank.
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pen Network

Figure 10 Open Network Database Dialog

The network extraction will search for the device application source file of each device template. If
the file is not found, user input will be required. Select the correct Neuron C source files defined in
LonBuilder. A progress window will appear to report on processing progress. When this step is
complete, click on the Next button to define the plant simulation.

(2) Define the Plant Simulation

The plant simulation definition dialog is used to specify the plant simulation code, the simulation
update period, and the plant I/O. The plant simulation update time is defined inside the simulation
code. Three steps follow to define the plant simulation. Follow the three steps in the Plant
Simulation dialog shown in Figure 11 to enter the plant simulation name, select the plant simulation
file, and define the plant I/O in the Plant Simulation dialog.
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Figure 11 Plant Simulation Dialog

Click the Define I/0 button in the Plant Simulation dialog. The Plant Interface dialog will open for
plant I/O definition as shown in Figure 12. The plant simulation is added to the simulation
automatically when opening the Plant Interface dialog. When a plant simulation name is selected,
all the variables defined in that plant simulation code will be listed in the Variables list. Select the
output or input variables and press the Apply button to record the I/O definition. Click Close to
close the Plant Interface dialog and return to the Plant Simulation dialog,

If the user wants to monitor the value of a variable that is not an I/O signal, select the variable as
Output. For example temp_loop[0], temp_loop{1], temp_loop[2] in the following dialog are not
plant I/O signals but internal variables. These variables are selected in the Output list, which allows
the user to monitor their values during the simulation. These variables may not connect to a device
I/O point.
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Plant Interface
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temp_loop[1}
temp_loop[2]
temp_ochan[Q]
temp_ochan[1]
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Figure 12 Plant Interface Dialog

After defining the plant simulation, click the Add Plant button to add the plant simulation to the
list (If you defined the plant I/O signals, the plant simulation is automatically added to the
simulation.) Click the Next button to go to the Device and Plant Interface Connection dialog.

(3) Device and Plant Interface Connection.

In the Device and Plant Interface Connection dialog, select the device I/O signals and the plant /O
signals which you would like to observe during a simulation. Click the Connect button to connect
the selected I/Os. All the connections are shown in the Device/Plant Interface Connections list.
Press the Delete button to delete a selected connection. Remember that we have defined the
temp_loop[*] internal variables as plant I/O signals to monitor their values. Connect these

variables to unused device I/O points. When finished, click the Next button to generate the
network simulation definition.

A progress dialog shows the network simulation generation progress (Figure 14). When the
process is complete, the next step is to compile the created files and build the network simulation.
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I

temp mod1 | 109 Relay? | resistor temp_loop... I ~
LonTalk | temp _mod 2 | I09 Relay2 | resistor temp_loop...
LonTalk | temp_mod3 | 109 Relay2 | resistor temp_loop...
LonTalk | temp_mod1 | |08 Relayl | resistor temp_och...
LonTalk | temp mod2 | 108 Relayl | resistar temp_och...
LonTalk | temp _mod3 | 108 Relayl | resistor temp_och...

= }

Figure 14 Simulation Generation Progress Dialog
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(4) Network Simulation Generation.

Add the generated simulation files to the simulation platform project and open the project in an
IDE, such as VC++ as shown Figure 15. Press the build project button in the IDE to compile the
project and generate the simulation code for the application. The code is generated in the current
working directory. Close the simulation generator. After compilation, open the simulation
platform to run the simulation.
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Figure 15 Complication of the Simulation
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4. NETWORK SIMULATOR

4.1 Network Simulator Architecture

The Network Simulator consists of the VDCS Network Simulation engine and a Graphical User
Interface (GUI). Figure 16 shows the architecture of the Network Simulator. The Network
Simulator dynamically constructs simulation objects, based on the network simulation definition
created by the Simulation Generator. The simulation definition files contain the network
configuration and the network application definitions. The GUI module provides a user interface as
well as various network analysis tools. The GUI module accesses the VDCS Network Simulation
to obtain the simulation status and statistical performance data for display within various analysis
tools. The GUI module also allows the user to send commands to the Network Simulation engine,
in order to control the simulation process.

Network Simulation
Definition

Network
Configuration

VDCS Network
Simulation

User Input

Application
Definition

Figure 16 Network Simulator.

The VDCS Network Simulation is divided into several modules implemented in Component Object
Model (COM) components. Each module is implemented as a dynamic link library (DLL). These
DLLs are loaded when a simulation starts. Interfaces are defined for each module to provide entry
points for other modules. Figure 17 shows the definition of the Network Simulation Component or
Simulation Core that coordinates the network simulation. The plant application simulation and the
device application simulation are implemented in individual components. The Network Simulation
Component provides IDeviceAPI and IPlantAPI interfaces for the device application simulation
module and the plant application module respectively. It also provides an ISimulation interface for
the user interface application to invoke and control the Network Simulation component. There are
also a number of interfaces that support network simulation operations and network analysis tools.

29



ICommand

ISimulation ()
IChannel
IDeviceAPI ()
o
IPlantAPI ()
IMonitor
IDamage

ARG R

Figure 17 Network Simulation Component

A detailed architecture of the Network Simulator in terms of COM components is shown in Figure
18. The Simulation Host is the user interface, and the GUI also consists of network analysis tools
including Network Analyzer, Application Monitor, and Damage Control.
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Figure 18 Network Simulation Architecture

4.2 Channel Model

The channel model represents the physical channel in a network. The channel is assumed to be a
continuous cable or wire that connects network devices in the form of a chain or a ring.
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The maximum length of a channel specified by LONWORKS limits propagation delays and
mitigates their effect on communication errors. We have decided not to include the effect of
propagation delays on our channel model. Since we are interested in the effects of cabling damage
on the network (e.g., a connection between devices is severed), we had to incorporate the network
topology into our model as well as a mechanism to describe message propagation.

[
-

\/

Figure 19 Message Propagation along a Channe

Our channel model consists of buffers for each device, attached to the channel. Each buffer
maintains a local copy of the last packet propagated through the channel. As shown in Figure 19,
when a device is ready to transmit a packet, it copies the packet into its channel buffer and
propagates it to adjacent buffers. The packet is transmitted to the device next to the sending device
and then propagates to other devices down the channel. This mechanism is repeated in the channel
model by propagating the whole packet not “one bit at a time”. The channel state is also
propagated from buffer to buffer.

The procedure of packet propagation is demonstrated in Figure 20. The figure shows four devices
connected to a channel. The double ring represents the service that the channel model provides to
the devices. The channel model allocates a buffer for each attached device. The packet
transmission has four phases as illustrated in Figure 21. First, a packet is generated in Device 1 and
transmitted to the channel. Then the channel makes a copy of the packet in the buffer assigned to
Device 1. Next, the channel propagates the packet to the buffer of each device according to their
connection order. The signals propagate across the channel in both clockwise and counter-
clockwise directions. A separating point is defined to prevent a message from looping back to the
source. The separating point is set between the first device and the last device of a channel. When
the propagation in each of the two directions reaches the separation point, it is terminated. Finally,
each device on the channel receives the packet from its local channel buffer. This mechanism
guarantees that the packet is propagated to every channel buffer only once.
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Figure 20 Packet Propagation Through a Channel

4.3 Channel Types

All of the LonTalk channels use the ANSI/EIA 709.1 [9] communication protocol standard.
Different types of LonTalk channels employ various transceivers with different transmission rates
and timing parameters. Echelon Inc. provides a software application called PERF to evaluate the
transceiver timing parameters. The timing parameters that characterize the channel performance
are Beta 1 time, Beta 2 time, priority slot number, bit rate and clock rate. To model the different
channel types, we set up a look-up table that contains all the timing parameter values for each
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channel type. When initializing a network simulation, the channel timing parameters are set
according to the channel type. In the present prototype, we have implemented two channel types:
TP/FT-10 and TP/XF-1250. We have extensively tested the TP/XF-10 channel in both Phase I and
Phase I of VDCS development.

4.4 Ethernet Model

Ethernet is a popular communication protocol for high-speed data transmission. The EIA 852
standard [1] defines the protocol for LonTalk over Ethernet. Ethernet gateways, such as the iL.on
Gateway from Echelon, are used to connect a LonTalk channel to an Ethernet network. Since data
transmission rates over Ethernet channels are significantly higher than they are over TP/XF-10
LonTalk channels we have assumed a simplified model for the Ethernet channel.

The Ethernet simulation module is based on three assumptions: (1) the transmission rate of
Ethernet is significantly faster than that of LonTalk channel, so that the transmission time of
Ethernet can be effectively ignored; (2) the Ethernet channel is merely used as a communication
backbone without any application devices attached to it; (3) there are small number of LonWork
channels connected to the Ethernet channel, so that the traffic load on the Ethernet channel always
remains low.

Ethernet Ethernet

% 2 )

LonTalk Channel LonTalk Channe! LonTalk Channel LonTalk Channe! LonTalk Channel LonTalk Channel

Ethernet and LonTalk Channels Simplified Ethernet Model
Figure 21 Ethernet and LonTalk Channels

The left-hand side of the drawing in Figure 21 shows three LonTalk channels connected to an
Ethernet channel via three routers. A router has an “A side” and a “B side” that connect the two
different channels. Section 4.6.2 describes how we implemented both sides of a router that
connects two LonTalk channels with the same protocol stacks used for a LonTalk device. For a
router that connects an Ethernet channel to a LonTalk channel, we merged all the router stacks that
connect to the Ethernet channel into a single object. We also incorporated the single router object
into the Ethernet model. As shown on the right-hand side of Figure 21, the router object connects
all of the router stacks that connect to the LonTalk channels. When a message is sent from one
LonTalk channel to another LonTalk channel via the Ethernet link, the message is initially sent to
the router connected to the source LonTalk channel. The message is then stored in the router stack
and is propagated to the router object of the Ethernet model. The router object will check the

addressing of the message and pass it along to the router that is connected to the destination
LonTalk channel.

33



Our Ethernet model assumes that there is no delay in message transmissions. The VDCS
simulation engine therefore does not increment time as a message propagates along the Ethernet
channel. The LonTalk router model that forwards the message to the Ethernet channel is used to
drive the Ethernet simulation. As a result, the Ethernet model, unlike the LonTalk channel model,
is not synchronized by the network synchronization algorithm. As a result the introduction of
Ethernet module did not affect the original synchronization algorithms. The network thread
synchronization is explained in section 4.7.

4.5 Network Damage

One of the objectives of the VDCS platform is to simulate network damage events. We consider
three types of network damage scenarios: (i) channel damage, (ii) router damage, and (iii) device
damage. Channel damage could result from the severing or short-circuiting of device-to-device
wiring; when it occurs, it divides a single channel into two distinct channels. A message cannot
pass through the break point. Router damage occurs if the router device malfunctions or if there is
a broken connection between the channel and the router. A message cannot pass from one channel
to another through the damaged router. The device damage scenario represents a disabled device
either because of power loss or malfunction.

Damage to routers or devices is relatively easy to incorporate into the router and device simulation
models—they simply stop responding. In this section, we focus on the implementation of the
channel damage scenario. As shown in Figure 22, damage to the channel divides it into two
distinct channels. Functionally, the messages on one side of the original channel are not able to
reach the other side.

Break Point:

Before Channel Damage

After Channel Damage

Figure 22 Channel Damage Scenario
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As described in section 4.2, the message and channel state for each device are held in an associated
channel buffer upon transmission. The message is not made available globally for every buffer on
the channel. Instead, the message and the channel state are propagated to adjacent buffers one after

another according to their physical network layout. Message propagation stops at a break in the
channel.

To introduce channel is halted during a simulation, VDCS marks the message buffer(s) closest to
the severed link as damaged. Message propagation will terminate at buffers marked “damaged”.
The buffer marked as “damage™ will not get the copy of the message and will not propagate a
message to its neighboring buffers.
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1. A packet is ready in Device 1. 2. The packet is transmitted to channel.
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3. The packet is propagated on the channel. 4. Only connected devices receive the packet.

Figure 23 Packet propagation in a damaged channel
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Figure 23 illustrates message propagation along a damaged channel. In the figure, a channel
discontinuity occurs between Device 3 and Device 4. Message packets are propagated in both
directions along a channel. A separating point is used to define the two ends of a channel—in this
case, between Device 1 and Device 4. The separating point and the damage point form the two
breakpoints that isolate Device 4, preventing it from receiving the packet from Device 1.

4.6 Multi-Channel and Router

When a network has more than one channel, devices in different channels can only communicate
with one another via routers or an ilon server. A router connects two channels and forwards
messages back and forth according to a routing algorithm. In this section, we describe the router
model and Ethernet router implementation used in VDCS

4.6.1 Router Model

VDCS uses a hierarchical form of network representation similar to the LNS Database. Devices
and routers are arranged as branches of a channel. Since a router connects two channels, the LNS
database may associate two channel objects with the same router that connects them. However,
VDCS simulates physical interactions between a channel and a router. It cannot allow a router
module to be duplicated. To design the channel simulation as an independent entity, it must
separate the connection of a channel to other channels connected by a router. We also need to
define the routers connected to a channel in the channel configuration, as well as which channel the .
channel is connected to through the router.

We analyze here the router structure in order to gain insight about partitioning of a routed network.
A router has two neuron chips which function as independent devices exchanging messages with
each other and the channels they attach to, as shown in Figure 24.  Each neuron chip has its own
protocol stack—called the Router Stack.

Channel 1

Router

Channel 2

Figure 24 Router Structure
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The design facilitates the separation of one channel simulation from another. Each router stack is
directly connected to a channel, so that it can be grouped with the other devices on the channel
object. The dashed line in the middle of Figure 24 represents a boundary between the two channels.

Figure 25 shows a more detailed diagram of a communication router that links two sub-networks.
The router implementation contains two sets of the same bottom three layers found in a standard
processing node implementation. Each layer set is connected to one of the two channels that the
router links. Similar to the device model, the router stack contains a network layer and a link layer,
as well as a MAC sub-layer that interfaces to a physical layer. The network layer determines if a
received message should be forwarded to the other channel according to a routing table. If no
forwarding is necessary, the message is dropped. The routing algorithm is based on the EIA 709.1
network protocol. The implementation of the algorithm is described in the next section.

Router
Layer 3 Network < > Network Layer 3
Link Link
Layer 2 @ @ Layer 2
MAC MAC
Layer 1 Physical Physical Layer 1
LN LN
A4 NZ
[
Network Channel 1 Network Channel 2
.

Figure 25 Software Architecture of Router

VDCS assigns a message buffers to each router stack. The two stacks in a router communicate by
accessing each other’s buffer. The channel configuration contains a router list that defines the
routers connected to a channel. When a channel is initialized, the router list of each channel is
scanned. If two channels contain the same router, a connection is made by exchanging their
message buffer addresses.

A router can be configured as one of the following types: (1) configured router, (2) learning router,
(3) bridge, (4) repeater, (5) permanent bridge, and (6) permanent repeater. The permanent bridge
behaves same as a bridge, except that its type cannot change after creation. Similarly, the
permanent repeater is functionally equal to a repeater but the type is fixed. Therefore there are
typically four types of routers. The router model can be configured as the specified type in a
network design. The type of router is set during network initialization and can be changed using a
function if necessary.
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4.6.2 Routing Algorithm and Forwarding Tables

A repeater transmits every received message from one channel to another. A bridge forwards only
those messages destined to a fixed domain. A configured router and a learning router forward or
discard messages according to a routing algorithm. The routing algorithm as defined by the EIA
709.1 standard [11] is illustrated in Figure 26.

The routing algorithm contains two built-in forwarding tables used to make forwarding decisions.
The two tables are the subnet forwarding table and the group forwarding table. The subnet
forwarding table contains the subnet information and defines the set of subnets to which a message
destination will be forwarded. The group forwarding table contains the set of groups to which a
message destination associated with that group will be forwarded.

We defined the two forwarding tables in the router stacks. Each router stack keeps a set of
forwarding tables individually. Each entry of these tables represents a network subnet or a group.
A flag is used in each entry to indicate if a message sent to the subnet or group should be forwarded
or discarded. Only the messages to those subnets or groups that have the set flag will be
forwarded.

The router stack forwarding tables of a configured router will be set by the Simulation Generator
according to the network topology. A search algorithm is used to explore the network hierarchy to
find all the subnets and groups of messages in the part of a network where the router stack forwards
messages. The search algorithm is implemented as a tree search. The search starts from the router
that the stack belongs to and goes to the other side of the network that the router stack does not
directly connect to. Figure 29. illustrates a search that starts from the shaded router stack and
searches the network in the highlighted area. If a router is identified, the channel that it is
connected to is recorded. When the channel is recorded, the router is flagged as processed. Then
the new channel is searched to discover additional routers that have not been marked as processed.
When the channel search is complete, the channel is marked as processed. Discovered routers
generally yield additional channels to search. The search terminates when each and every channel
and router is marked as processed.

During the search, subnets are checked by examining a router stack’s subnet ID. Groups are
checked by going through each entry of every device address table. A flag is set based on the
existence of a subnet and a group in the destination side of a router stack in the corresponding
forwarding table.

The subnet forwarding table of a learning router is set according to the transmitted messages during
the network simulation. The router will learn the subnet location based on the address of sending
devices. The group forwarding table of learning router is not configurable, thus any group message
will be forwarded.
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Figure 27 Searching Through a Network to Set the Forwarding Tables

4.6.3 Router for Ethernet

An Ethernet router or gateway is divided into two parts: a LonTalk router stack and an Ethernet
router stack. The implementation of the LonTalk router stack was described in section 4.4. Since
we implemented a simplified Ethernet model, all of the Ethernet router stacks of an Ethernet
channel are simplified and are represented as a single router object. The router object has one In
Stack and one Out Stack, as shown in Figure 28. The In Stack is connected to every LonTalk router
stack by sharing its buffer memory, so that every LonTalk router stack may forward a message
directly to the In Stack. The Out Stack connects to a LonTalk router stack by holding the buffer
address of that router stack.

Ethernet

ot Router Object

In Stack Out Stack

Router 1 Router 2 Router 3

Channel 1 Channel 2 Channel 3

Figure 28 Ethernet Router Object
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When a message is forwarded (as illustrated in Figure 28), the LonTalk router stack (Router 1)
sends the message to the In Stack of the Ethernet router object. Then the Ethernet Router object
forwards the message to the Out Stack. Then, the Out Stack dynamically connects to each of the
LonTalk routers and determines if the message should be forwarded to that LonTalk router, one at a
time. First the message is copied to Out Stack; then the Out Stack connect to one of the LonTalk
router stacks; finally, the Out Stack determines whether to forward the message to that router stack.
The message will be copied to the Out Stack again for forwarding the message to another router
stack until attempts are made to forward the message to all the router stacks. If the router stack is
the one sending the message, the Out Stack will skip it and continue to check the next router stack.

4.7 Simulation Threads, Time and Synchronization

The VDCS test platform is designed as an event-driven multi-threaded simulation software
package. During a simulation run, each thread performs a subset of the computation effort
synchronizing the time evolution of each thread is critical to maintaining causality. During Phase II
of the VDCS development effort, several changes were made to the thread synchronization
algorithm to accommodate the expanded simulation features (e.g., incorporation of routers, redesign
with COM technology, and improved channel model.)

4.7.1 Simulation Threads

A typical network consists of several channels, devices and routers. A single channel and all of the
devices and routers that are connected to that channel together form a subnet. A collection of
subnets forms a network.

Plant 1 I

Plant 2 «—

Channel 1 Channel 2

o e
Staick Stack
MAC" - MAC

| Device 1 Router 2 Device3 | | Deviced

Figure 29 Network Simulation Threads



VDCS uses a network object and various threads to manage the network simulation. One thread is
used to simulate each channel. Three threads are used to simulate each device, one for the device
application, one for the device communication stack, and one for the device MAC layer. Two
threads are used to simulate each router, one for the router stack, and the other for the router MAC
layer. All of these threads simulate the network internal events in the order of time that they occur.
A network simulation controller controls most of the threads, except for the MAC layer threads.
The channel thread synchronizes all of the MAC layer threads that access that channel. The plant
simulation is also represented as a thread, which is synchronized with the network simulation.
Figure 29 represents a network simulation in terms of threads. Each block represents a simulation
thread for a simulation object. Data are exchanged between threads that are next to each other in
the figure. The lines connecting the functional blocks represent data flow (e.g., message
transmissions) between the various network components.

4.7.2 Simulation Time Update

Each network simulation thread maintains a local simulation clock to keep track of their simulation
progress. A network simulation controller runs the synchronization algorithm to control the
simulation threads according to their simulation time. The simulation time of a thread is called the
local simulation time. The simulation controller also maintains a global simulation clock to keep
track of the overall simulation progress. The global simulation clock evolves with the progress of
any local simulation clock. Every time an event is simulated in a thread, its simulation time is
updated. The simulation controller only updates the thread that results in the smallest time
increment of the global network simulation clock. The global network simulation clock evolves
according to the local simulation clock of the thread that is currently updated.

The simulation clock is implemented as a counter with fixed size (i.e., the counter has a maximum
number that it can represent). With the fine granularity used in VDCS simulations, the current
maximum time that the clock can represent is about 12 hours. When the clock value exceeds the
maximum value, it overflows. This overflow event is handled with a dedicated procedure. The
global simulation clock overflow event begins when a local thread simulation clock overflows.
When all of the thread simulation clocks overflow, the network simulation clock overflows. When
a thread clock overflows, an overflow flag is set in the thread. The status of the flag is reported to
the network simulation controller. The simulation controller converts the overflowed clock value to
its actual value and makes a decision to update the threads. The simulation controller keeps
synchronizing the threads until all the local thread simulation clocks overflow. When all the thread
simulation clocks overflow, the simulation controller clears the overflow flag of each thread,
terminating the clock overflow event.

4.7.3 Thread Synchronization Scheme

While the synchronization algorithm developed in Phase I successfully coordinated the simulation
threads in VDCS for a single channel network, it had some shortcomings. The algorithm did not
scale well with increasing numbers of channels and devices in a network. In addition, the algorithm
did not handle efficiently simulations characterized by threads with significantly different local
time increments. This happens frequently in VDCS simulations where the channel threads evolve
in fine time increments while the device application threads evolve at relatively much larger time
steps. A new synchronization algorithm was developed in phase II to address these shortcomings.
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The new synchronization algorithm uses a scheme to predict the local time increments in order to
improve performance.

The new synchronization algorithm allows a thread to update only if it makes the minimal time
increment. The simulation task is divided into a set of events. Each thread simulates one event
when it updates. Each thread increases its simulation time by the amount that the event costs. A
simulation controller governs the synchronization activities. Every time a thread attempts to
update, it calls the simulation controller and reports its current time and the time increment that
would result from executing the next event. An overflow flag is also passed to the controller in
case a clock overflow event occurs. The simulation controller checks every thread during a thread
update cycle, and maintains a list of all the threads’ next time increment. Only the thread(s) with
the minimum time increment are permitted to update during a thread update cycle.

A thread may execute repeatedly while other threads are idle. The previous algorithm checked
every thread at every time increment before allowing a thread to update. The new algorithm
provides each thread with self-awareness mechanism to determine if its future updates still
represent the minimum time increment among all simulation threads. This mechanism allows a

thread to execute several events in succession without reporting the result to the simulation
controller.

Communication between threads is another critical issue in thread synchronization. Thread
communication occurs between: (1) the device application and the plant application, (2) the device
application and the device stack, and (3) the device/router stack and the channel (the device stack
communicates with channel through the device MAC layer). VDCS follows two rules to guarantee
that the simulation maintains causality.

Rule I For any Logic Process (LP), at any time when it receives messages from
other LPs, the current time of this LP must be larger than the timestamp of any
available messages.

Rule II: For any LP, at any time when it outputs a message, the timestamp of the
message must be larger than any other available messages.

The synchronization algorithm must guarantee that a thread receives the latest information from
other threads. No future information should be received. Therefore the synchronization needs to
strictly control the communication between threads. The improved algorithm requires a thread to
receive information and update its output before simulating a new event, since completing the event
will increase the local simulation time.

We use here the same nomenclature introduced in the final Phase I report that described the
synchronization algorithms. We define &, as the k™ execution of the i" thread, T, (i = 1,...n).

T;(k;) represents the simulation task at time t,(k;). We further define ¢,(k;) and At,(k;) as the
simulation time and time increment respectively, of the i thread T, at its execution step k,. We

specify that #, represents the global simulation time to which all other ¢, (i = 1,2,...n)
parameters are synchronized.

Table 3 describes the synchronization algorithm executed by the network simulation controller.
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Table 3 Simulation Controller Synchronization Algorithm

STEP 1. Initialize #,(0)=0, At,(0)=0, k, =0.

STEP 2. Check all thread 7T, fori=1,2, ..., .
For each i satisfying ¢, (k, )+ At, (k, ) =1,(k, )+ At, (k,):
A)  Enable the thread simulation.
B) Record t,(k, +1)+At,(k, +1)
STEP 3. Set t,(k, +1)=1t,(k, )+ At,(k,)
STEP 4. Set At,(k, +1)=minlt, (k,)+ Az, (k,)-1,(k,)] i=12,...,n
STEP 5. Increment execution step (k, = k; +1)
STEP 6. Go to STEP 2.

Each thread executes a local algorithm as shown in Table 4 upon being enabled by the simulation
controller. The algorithm employs a look-ahead technique. The initial value of At, (k,.) is set to 0,

to enable all the threads to execute when the simulation starts. The current At, (k,.) is determined
based on the execution of a simulation task 7;(k; +1). Based on #,(k;) and At,-(k,-), the

simulation controller can determine the next step of the thread 7.

Table 4 Thread Synchronization Algorithm
STEP 1. Initialize #,(0)= 0, A#,(0)=0, k, =0, stop = true.

STEP 2. Wait for being enabled for simulation.
STEP 3. Enabled for execution: Do A), B), and C) in order.

A)  ifstop = false and t, (k, )+ At, (k, ) > 1, (k, )+ At, (k,),
stop = true, and go to STEP 2. Otherwise,
B) if t,(k, )+ Aty (k, ) = t,(k, )+ At,(k,), go to STEP 2. or
C) ()t =tk +1)=¢(k)+Ar k),
(2) Process simulation T (k, +1),
(3) Determine At, = At,(k, +1), and

(4) stop = false.
Repeat STEP 3, until exit to STEP 2.
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A verification test was developed for the synchronization algorithm to evaluate the effectiveness of
the improvement. The verification test compared the overhead of the simulation synchronization
algorithm added to the network simulation. The test is arranged in two scenarios where the thread
time increment is different. The test shows that the randomness of the thread’s time increments has
a significant impact on the simulation speed. A test of four threads synchronized with the improved
algorithm showed a 40% performance improvement over the previous version when threads
updates with totally random time increments; and a 70% performance improvement when the time
increments of the different threads varied by at least 10 times difference between each other. These
tests also validated that causality is never violated.

4.8 Network Device Application

The network device application is the application that runs on the network devices to determine the
device behavior. LONWORKS device applications are programmed in Neuron C and downloaded
to each device after compilation. The device application simulation includes simulating the device

application and simulating the way a Neuron Chip executes the application, as well as other related
behaviors.

4.8.1 Device Simulation Implementation

The implementation of a device application consists of three components: a device application
simulation, a protocol stack simulation and a MAC layer simulation. The device application
simulation executes a user-defined program that interfaces with local I/O, prepares messages to
send over the network, and processes and responds to incoming messages. The protocol stack
simulates the EIA709 communication protocol on a LonWork device. The MAC layer runs the
media access algorithm to interface to the communication channel.

The device application simulation is divided into a device application service and a device
application simulation. Figure 30 illustrates the architecture of the implementation of the device
application. The device application service simulates the application services defined by the
communication network protocol supported by the Neuron Chip. It works as a middle layer
between the device application and the device stack. This part is implemented inside the
Simulation Core. However, the actual device application executes on a separate component
implemented as a stand-alone DLL called DeviceApp.dll. The device application simulation
component simulates the device applications translated from Neuron C code using the API services
provided by the device application service. Interfaces IDeviceAPI and IDevice are employed by

the device application service and the device application simulation respectively to communicate to
each other.
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Figure 30 Device Application Implementation



The major motivation to separate the device application simulation from the simulation core is to
make the device application debugging easier and to make the network simulation transparent to the
software user when debugging the network application code using VDCS.

4.8.2 Device Application Service

The device application service executes within the device application thread in the simulation core.
It is synchronized with other simulation threads by the network simulation controller. Generally,
there are five services that the application service manages as listed below.

= Device application simulation initialization

* Device application simulation execution

» Network variable propagation

» Timer update and timer expiration event handling
* Device IO updates.

It also supports the functions of the device application API for application code execution. The
device application API is available through the interface IDeviceAPI of the simulation core for the
application service. The API is described in Device Application Simulation APL

The device application service also interfaces with the device stack. It is connected to the
application layer and forwards/receives network messages to/from the application layer of the
device stack. An event queue is maintained by the device application service. When a message is
received, a related event is added to the event queue (if the device application responds to that
event). The implementation of the queue is based on tests of smartcontrol programmable device.

4.8.3 Device Application Simulation

The device application simulation communicates with the application service using an interface
Device defined in DeviceApp.dll. The device application simulation implements a simulation of
the scheduler used in the Neuron Chip to control the application execution. It is based on the
device application source code implemented by the user. The VDCS translates and coverts this
source code into a C++ format and compiles it into the device application component. Since the
network device application is defined in Neuron C code, the translation task and the code
complexity and flexibility requires VDCS to build a device application simulation component for
each network simulation.

The simulation generation process is automated with the introduction of a Simulation Generator.
The definition of the device application simulation is described in detail in Appendix I. A compiler
and a linker are required to build the device application simulation code into the device application
component. The VDCS simulation generator uses the console msdev.exe compiler included with
the Microsoft Visual C++ development environment. It defines a project file for the device
application simulation project. When the simulation generator builds a network application, it
launches msdev.exe, which loads the pre-defined project file. The device application simulation is
built as a DLL according to the settings of the project file.
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4.8.4 Response Time

The device response time is the speed that the scheduler responds to an event or to propagate
scheduled messages. It is represented in the simulation by the device simulation time increment.
This time varies according to particulars of the user application code. This device behavior requires
a dynamic determination of the simulation time increment and updating the simulation time based
on the device application activity. However, this value is difficult to obtain as a number of
conditions affect the device response time, including the application code computing time, the
number of network variables, and the number of timers in the user application code. The thread
synchronization algorithm described in section 4.7.3 supports adaptive simulation time increments
in each thread. Although we do not have an effective method to determine the device response time
at this time, we developed API functions for the applications to dynamically update the simulation
time increment.

4.9 Control Plant Application

The plant simulation model is developed in VDCS and is improved in phase II to simulate the
control plant. A network simulation interface is implemented that interfaces the network devices
and control plant to exchange control signals and plant operating states. The plant simulation is
able to integrate third-party process simulation software in the VDCS simulation environment to
perform a complicated system.

4.9.1 Plant Simulation

A plant simulation includes a plant application simulation and plant simulation services. The plant
application simulation is implemented in the Plant Simulation Component. Similar to the device
application simulation, the implementation of the plant application simulation is separated from the
simulation core. The Plant Simulation Component is encapsulated in a DLL; the Plant Service
component remains in the simulation core. Figure 31 illustrates the implementation structure of the
plant simulation and the device application simulation.
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Figure 31 Plant and Network Simulation Model

Since the control plant of a control network may vary from one application to another, VDCS
accepts a user defined C style pseudo-code to define the plant application. A plant application is



simulated iteratively. The plant simulation code defines a single iteration of the plant application.
The simulation generator translates the simulation code and tailors it into the network simulation
structure. The simulation generator uses the console msdev.exe program to build the project for the
Plant Simulation Component. A project file defines the settings for the compiler to build the
component. The definition of the plant application simulation is described in Appendix II.

The Plant Service is implemented in the working thread responsible for the plant simulation. The
thread is incorporated into the simulation core and is synchronized by the simulation controller.
Both of the Plant Simulation Component and the Plant Service provide interfaces to each other to
perform the plant application simulation. The Plant Simulation Component has an interface IPlant.
The Plant Service has an interface IPlantAPI. They are interfaces that are active during a network
simulation for exchanging plant simulation states and control signals. The Plant Service also
provides APIs and simulation services for the plant application simulation.

A Network Interface connects the plant simulation and device application simulation to buffer the
data and signals between plant and device application. Both of the plant service and the device
application service provide access functions to this interface. The implementation of the Network
Interface is described in the next section.

4.9.2 Network Simulation Interface

The network simulation interface is the interface between the plant simulation and the device
application simulation. The network simulation interface is an array of buffers that hold data from
the plant simulation or the device application simulation. The network simulation interface employs
two sets of data exchange APIs: one for the plant simulation and one for the device application
simulation. A connection between a plant and a device IO is represented by the two references to
the same network simulation interface buffer in a plant simulation and a device application
simulation respectively. Figure 32 illustrates two such connections between plants and devices.
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Figure 32 Network Simulation Interface
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As shown in the figure, the third data element in Plant Simulation 1 represents a plant output. It
updates the third network simulation interface buffer. The third I/O object of Device 1 at the same
time is updated according to the same simulation interface buffer. Therefore the third I/O of Device
1 is updated with the value of the third variable of Plant 1 simulation. Similarly, the third /O of
Plant 2 simulation is updated with value of the third I/O of Device 2.

4.9.3 Third-Party Simulation Tool Integration

A key objective in the development of VDCS was to integrate the tool with other third-party
simulation and visualization tools. Fairmount Automation had independently developed a tool that
functions as a simulation manager coordinating the execution of various stand-alone simulation
software packages. Using this tool, we are able to set up a system simulation with the VDCS test
platform simulating the control network and a third party process simulation tool (FlowMaster for
example) simulating a physical control plant. We also developed a method to implement a network
management device simulation that interfaces HMI software, such as Wonderware InTouch.

Figure 33 System Simulation Archtecture

Figure 33 illustrates the overall simulation architecture. The Simulation Manager activates and
drives the Plant Simulation. We customized the Simulation Manager by defining a VDCS client
and server for data exchange. The plant simulation in the VDCS Network Simulation object drives
the Simulation Manager module to run the simulation. Data from the control network simulated in
the VDCS Network Simulation module is reported to the HMI module via a network management -
device, which is typical for a network application. The network management device sends network
states and values to the HMI and receives instructions from the HMI using a DDE server defined in
the HMI software. The simulation manager exchanges data and signals with the HMI in the same
way. The plant simulation data from Plant Simulation module and externals commands from HMI
module are tunneled through the simulation manager. Detailed implementation of this architecture
is explained in section 4.11, where a validation test is described.

4.10 Device and Channel Statistics

VDCS includes analysis tools to evaluate network performance. These analysis tools are designed
to display the network performance in different levels of detail, depending on the interests of a

49



network developer. The analysis tools measure network performance with various statistics of
network simulation parameters, such as the channel throughput, collision rate, etc. These statistics
are computed within the simulation core both at the channel level and at the device level at a fixed
update interval.

The channel level statistics monitor the channel traffic including the total count of transmitted
packets, the channel throughput, collision count, collision rate, average packet size, bandwidth
utilization, and message counts according to their service type.

The device level statistics monitor device activity in terms of outgoing messages. The device
operation status and its impact on the channel traffic are the major focus. The statistics include the
count of total transmitted messages, the count of scheduled messages, the time used for
transmission, and the bandwidth utilization of the device.

Each analysis tool is associated with a set of simulation statistics. The relevant network
statistics are computed only when the network analysis tool is enabled to improve
performance. However, there is a set of fundamental statistics that all other statistics are
based upon that are computed whenever a simulation is executing. These fundamental
statistics include simulation time, channel transmitted message count, total message size,
collision count, total channel transmission time, device transmitted message count, device
transmission time, and message count according to different service types.

4.11  Integrating the Network Simulator with Third-Party Simulation Tools: A Practical
Example

We tested VDCS with a fluid control system involving 8 network devices, a third party plant
simulation tool, and two human-machine interfaces (HMI). The test represented a likely future real
world system simulation scenario that VDCS will be called upon to execute. The demonstration
platform consists of a virtual piping system implemented in a FlowMaster fluid system simulation
integrated with a Smart Valve model simulation that is controlled by a real (hardware-in-the-loop)
LONWORKS network. An illustration of the simulated piping system is shown in Figure 34. The
simulated piping system has 3 nozzles, 9 valves, 2 pumps and 1 tank. There are six valves in the
rectangular area that form two zones around the T intersections in the piping network. Each set of
three Smart Valves in a zone try to detect a rupture within a zone and isolate the zone to avoid fluid
loss and pressure drops in the pipes. The three Smart Valves apply a rupture detection algorithm
and control logic to perform this task. Valves are also used in the supply pipes at the two ends of
the pipe network. LonTalk devices are employed for Smart Valve communication to exchange
flow rates.

Figure 35 is a logical representation of the piping control system of the demonstration platform.
The control system shown in blue applies a LONWORKS control network with 8 devices to control
the system in automatic mode.
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Figure 34 An illustration of the Physical Piping System with Smart Valves
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Figure 35 Piping System and Control Network Schema
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The FlowMaster simulation simulates the fluid dynamics of the piping system including the pipes,
valves and pumps. The VDCS full-scale network simulation tool replaces the control network
hardware in the physical demonstration platform and simulates the control network dynamics. A
simulation manager exchanges data between the FlowMaster simulation and the network
simulation.

Two HMIs are designed using Wonderware InTouch displayed in two PCs to monitor and control
the piping system and the control system respectively. The two HMIs are modified and combined
into one HMI with two monitor windows that can be switched back and forth. The full-scale
simulation software provides simulation analysis tools like Network Analyzer and Application
Monitor to observe the channel traffic, the piping system performance and the control system
control signals.

Figure 36 shows a snapshot of the simulation. The background is the control system HMI
indicating a rupture detected in the zone as highlighted by a red arrow. A Network Analyzer on the
upper right side monitors the channel performance. An Application Monitor on the left monitors
some critical pressure readings in the piping system. The part of the full-scale simulation software
main window is at the lower right corner.
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Figure 37 Application Monitor with Graphic

Figure 37 is a zoom-in view of the Application Monitor window. The Application Monitor is a
simulation analysis tool built into VDCS that monitors the I/O signals of both the network device
and the plant simulations. The I/Os of interests can be selected in this dialog and the value of each
I/O is updated periodically according to the data value in the network simulation interface.
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5. DESIGN TOOL USING THE NETWORK SIMULATOR

VDCS provides an integrated platform to simulate both the dynamics of the control network and
the physical system under control. In this chapter we describe a design tool based on the Network
Simulator and explain how it simulates network channel traffic and evaluates the network
messaging schemes for a LONWORKS network design. The software is designed to be easy to
use, fast and user friendly, while also providing very accurate results. The tool provides the same
network traffic statistics that a Protocol Analyzer connected to a physical system would provide. It
also generates additional statistics on network traffic that are very useful to a control system
designer and that are not available by any other means (i.e., protocol analyzers do not provide this
information). Appendix III provides a User Guide to this software and describes all of the features
included with the tool. This chapter describes the software architecture and implementation details.

5.1 Software Architecture
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Figure 38 Network Simulation Tool Architecture in Design Tool

Figure 38 shows the architecture of the network simulation tool in the Design Tool. The VDCS
Network Simulation Component, which is the simulation kernel, remains the same as in the full-
scale tool. The Device Application Component and Plant Application Component also remain
unchanged, although the plant simulation is not used in the Design Tool (the network analysis tool
components are removed in this case.) The GUIs including the analysis tools are integrated into the
Simulation Host.

Since the plant is not simulated in the Design Tool, the plant simulation and the network/plant
interface are no longer necessary in the Simulation Generator, which results in a simplified
structure. The architecture for the simplified Simulation Generator is shown in Figure 39. The
Network Simulation Definition only depends on the LNS Database and the device application
source code. Therefore user inputs are dramatically reduced.
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Figure 39 Simulation Generator Architecture in Design Tool

The Design Tool seamlessly integrates the Network Simulation Tool and the Simulation Generator
into a single software package. The integration of all the software applications is explained in the
next section. The Design Tool User Guide in Appendix III also provides a detailed description for
how to use this package.

5.2 GUI and Application Integration

The Design Tool contains all of the simulation facilities including the Simulation Core dynamic
link library, the Device Application simulation dynamic link library, the Simulation Generator
application, the NC2C translator application and other supporting applications. A user GUI was
designed to provide a user interface and to manage all the facilities that support the simulation. The
simulation tool also depends on the LNS database for network configuration and on the Microsoft
MSDEYV application to build the Device Application simulation dynamic link library.

Figure 40 shows the software architecture and the relationship between the software and the
supporting components and applications. We named the main application for the network
simulation LonSim. From Figure 40, we can see that the GUI launches Simulation Core together
with Device Application to perform a network simulation. The GUI retrieves the statistical data
from the Simulation Core for display.

When a new simulation is built, the GUI starts the Simulation Generator. The Simulation
Generator accesses the LNS network database and uses the NC2C Translator and MSDEV
application to build a new simulation executable. The simulation configuration, which is accessible
by the Simulation Core, is temporally stored in the machine and can be saved for future use.
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The additional dependency environment is the folder and files hierarchy designed as shown in
Figure 41. The software is installed in the root directory named LonSim. In the LonSim folder
there are five sub-folders: bin, Common, DeviceApp, DLLs, and Network. The bin folder contains
the applications including format.exe, LonSim.exe, nc2c_beta.exe, VDCS_Gen.exe, and
wSpawn.exe. The network configuration files used for network simulation are also stored
temporally in this folder. The common folder contains common files used by multiple modules.
All the dynamic link libraries and debugging related files such as the program database file are
located in the DLLs folder. The files associated with the Device Application simulation project is
saved in DeviceApp folder. The temporally saved network configuration files can be saved in the
network folder. The sim.fmt file in this folder maintains a list of the saved network simulations.
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Figure 41 Design Tool Folder Hierarchy
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The GUI uses a message window to display operation information of the simulation tool. To
uniformly display the output of different applications, we employ memory pipes to propagate
output from secondary applications to the main application. Figure 42 shows the scheme that is
used to propagate the application outputs. A pipe is used between LonSim and VDCS_Gen to
forward messages to be displayed. There is a second pipe that propagates outputs from NC2C and
MSDEV to VDCS_Gen. VDCS_Gen propagates its own output messages and the received
message to LonSim through the first pipe. All the output messages are displayed in the message
pane in LonSim.

Figure 42 Message Propagation with Memory Pipes.

During a network simulation build process, the main window constantly checks the progress of the
simulation building process and displays progress information from VDCS_Gen.exe. To improve
the user interface, we added a working thread to take care of this heavy working load of message
processing in order to avoid a less responsive user interface.

5.3 Analysis Tools

To identify the critical features a design tool must have and to increase its analysis abilities, we
surveyed a number of commercial products and technical papers for network design and simulation.
Three products were identified that have features applicable to the design tool. These commercial
tools are CAN Open Environment (CANoe) from Vector Informatik, Germany; LOYTEC Protocol
Analyzer (LPA) from LOYTEC, Germany; and LonManager Protocol Analyzer from Echelon,
USA. The CANoe is the design tool for CAN networks. This product is very similar to our design
tool. The other two tools are protocol analyzers with similar features. They are tools designed for
design analysis and trouble-shooting.

A number of features were identified in our survey as critical ones that should be implemented in
the Design Tool. These features are listed next.
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* NV configuration and display in format.

NV configuration is used to configure the device by set configurable NVs. It provides the
flexibility to modify the device behavior with a fixed application. This feature also can reduce
the number of network applications in certain cases.

» Device message loss ratio.

This feature shows the number of messages lost within a device. When messages are lost, it
implies that the device scheduled more messages than it can handle or that the channel would
allow going through. This feature is only available in a simulation.

= Device bandwidth utilization and contribution to total bandwidth utilization.

This feature shows the bandwidth utilization of an individual device and it’s contribution to the
total channel bandwidth utilization. With this feature, it is very easy to identify the most
vulnerable device by comparing the bandwidth utilization of all the devices in a channel.

*= NV log and view (in raw data format)

This feature logs and display transmitted network variable including it’s time stamp, modes,
addressing and data. This feature may be used to monitor and trace individual messages. It
also shows the total time delay for a routed message to be received.

= Channel traffic load monitoring and comparison.

This feature provides the basic evaluation of channel performance and makes it easy to identify
overloaded channels. It will help the user to balance the traffic throughout of the network.

»  Router load monitoring and comparison.

This feature reveals the router packet load to help to identify the improper design of the inter-
channel connections and the most vulnerable routers. It is a valuable feature to improve the
overall network performance.

Various network analysis tools are developed for VDCS according to the list. The Design Tool
User Guide included in Appendix III provides a comprehensive description of these analysis tools.
There is another analysis tool called Application Monitor developed in the full-scale simulation tool
for monitoring the 1/0 signals of device and plant simulations.

5.4 Device Application Debugging

The device application debugging function is another promising feature of the VDCS simulation
tool, which may be the most appealing trouble-shooting feature that VDCS offers. Debugging is an
essential method in software development and trouble-shooting. However, the networking
application running on devices over a network imposes additional difficulties in debugging. It is
critical to trace the response of each device to others. Unfortunately, the LONWORKS network
design tool LonBuilder only offers the ability to debug device application on one individual device
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at a time. During a debugging session only the application on the debugged device is under control.
The applications on other devices just run at their normal speed. The interaction between devices
under normal operating conditions is not possible to repeat in a debugging session. Therefore the
external interaction of device application in a debugging session is not equivalent to the scenario of
a normal operation, which very much limits the debugging ability.

On the other hand, the debugging of the network simulation is a promising approach to debug the
device applications supposing the network simulation is able to accurately represent the network
dynamics. Since the network simulation is pure software itself, many sophisticated software
program debuggers are available and can be directly applied to debug the device applications.
Since the simulation tool is developed on VC++ IDE, by default we use the VC++ debugger to
debug the device application and plant simulation.

According to the simulation generation procedure, the user needs to compile and build the
simulation project in the final step before running the simulation. It is advisable not to expose a
user to the network simulation details such as the protocol simulation, channel communication,
thread synchronization, graphic interface, etc. Making the simulation code invisible for the user
will help him/her concentrate on the user applications in the event of application code debugging.
We applied COM technology to the VDCS in order to improve the application program debugging
ability. Both the user application simulation and network protocol simulation are separated and
encapsulated into DLL. COM components. User can debug one DLL without knowing the tedious
source code in other DLLs. This approach makes the network simulation transparent to the user
during a device application debugging session. A formalized procedure to debug the device
application is described in Design Tool User Guide (Appendix III). The plant simulation may be
debugged in a similar way using the full-scale simulation tool.
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6. VDCS VALIDATION

In VDCS project phase II, we validated the VDCS design with the Chilled Water Reduced-Scale
Advanced Demonstrator (CW-RSAD), and verified the simulation accuracy of channel traffic and
device applications. The CW-RSAD is an advance demonstrator that employs a medium-scale
LONWORKS network with over 100 network devices to control a piping system to provide chilled
water for cooling. The LONWORKS network on the CW-RSAD has 16 channels including an
Ethernet channel. The network consists of 108 network devices and 11 LonPoint routers and 4
iLon gateways. Under normal operation, when the piping system reaches a steady state, each
network device propagates its sampled signals at a constant rate (one message every 5 seconds).
Measurements of channel throughput, bandwidth utilization, and average packet message size under
normal system operation were gathered from the CW-RSAD network.

The network design was re-generated for this testing effort, as is shown in Figure 43, A simplified
version of device applications were developed to perform the task of normal network operation. In
the test, all the devices sent a message every 5 sec for each network variable to its destination. All
the messages were also fed to a network management device. Since the network management
device on an Ethernet channel cannot be easily simulated, an extra channel was introduced to
receive all messages. Since there no messages come out of the network management tool, this
modification will not compromise the accuracy of the network simulation.
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The data gathered in the VDCS simulation and the RSAD system are compared in Table 5. Three
channel statistical parameters are compared for each communication channel, namely the channel
throughput, the bandwidth utilization and the average packet size. Since the network throughput
and average packet size are predictable, the expected result is also listed in Table 5. The data of the
RSAD system and the expected result are classified and highlighted according to the degree of
agreement with the corresponding VDCS simulation data. A white cell means the data matches
closely to the simulation data. A gray cell indicates the data differs slightly from the simulation
data. An orange cell indicates that the simulation data do not agree with the data in the cell.

Table 5 Comparison of Network Traffic Statistics

RSAD system VDCS simulation Expected Result

Channel Pkt/sec Size |Pkt/sec| BW Size |[Pkt/sec| BW Size
[PORT 26.4 15.5 | 71% 26.9 15.8 n/a 26.5
STARBOARD E ¥ 13.0% 27.8 165 | 7.2% 26.8 15.8 n/a 26.4
ILOAD 3 23.2 11.7 | 51% 23.8 12.0 n/a
25.6 3.8 [ 1.8% 25.4 3.8 n/a 26.0

SVC_RS10-11 20 | 1.0% 23.9 2.0 [ 0.9% 25.5 2.0 n/a 24.4
SVC-RS12 0.9 [<1.0% 24.6 1.0 | 0.5% 25.3 1.0 n/a 24.4
SVC-RS23 1.4 |1 <1.0% 26.1 14 | 0.7% 27.4 14 nfa 26.6
SVC-RS02-03 42 | 2.0% 26.5 4.1 1.9% 27.3 4.2 n/a 26.6
SVC-RS228 1.4 [<1.0% 261 14 | 0.7% 27.4 14 n/a 26.6
ACP02 25.9 3.8 | 1.8% 254 3.8 n/a 26.0
SVC-RS13-15 24.8 29 | 1.3% 25.5 3.0 n/a 24.4

SVC-RS01-05 4.0 | 2.0% 26.9 41 ] 2.0% 27.3 4.2 nfa
SVC-RS22P 1.3 [<1.0% 26.9 14 | 0.7% 29.3 1.4 n/a
SVC-RS16 0% 4 14 | 0.7% 27.8 1.4 n/a

Table 5 shows that the channel throughput in the VDCS simulation matches the data of the
expected result closely. The average packet size in the simulation also matches the expected result
with small disagreements in two cases. Comparison of the simulation data and the operation data
from RSAD system, including the bandwidth utilization, indicates that the performance of the
hardware and the simulation are very close in most cases. For the STARBOARD channel and the
SVC_RS16 channel, the hardware data do not agree with the simulation data and the expected
result. The difference is due to the abnormal operation of a few network devices in those two
channels. In normal operation, a network device heartbeats messages at a constant speed.
However, if some sensor signals connected to the device I/Os changes frequently, the device will
generate more traffic. Although the hardware data was gathered at the normal operation state, the
oscillation of certain sensor signals forced these device sto send more messages than they do in a
normal state. With the exception of these anomalies our simulations provided excellent predictions
for the network designer.
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7. THE COMMUNICATION SIMULATOR

In this chapter, we describe the communication simulator, a data network modeling tool that we
have developed for LONWORKS distributed control networks. The modeling tool, using OPNET
Modeler®, allows multiple system configurations to be defined and examined completely. The
Communication Simulator assumes more a priori information than the Network Simulator. On the
other hand, it is much quicker than the network simulator, since it does not require that all control

algorithms run simultaneously with the communication infrastructure simulation. This chapter
consists of four parts.

In section 7.1, we introduce the implementation details of the network models by using OPNET,
which is one of the most popular engineering tools used for data networking research.

In section 7.2, we described a modeling tool we developed for LONWORKS communication
protocol and its detailed implementation features, architecture, interface and applications.

In section 7.3, we discuss two analytical models for LONWORKS protocol. The first one studies
the behavior of the channel from the “channel viewpoint”, while the other takes the “node
viewpoint”, focusing on the MAC layer (predictive p-persistent CSMA algorithm). The analytical
model we provided for the node uses a Markov chain model, under the key assumption that the
collision probability of a packet transmitted by each node connected to the LONWORKS
communication channel is constant and independent of other collisions.

Finally, we verify the performance of the modeling tool by comparing results gathered from
simulations, from a physical system using LONWORKS nodes, and from the analytical models
(section 7.4).

7.1 Background - OPNET Modeler Description

The OPNET (Optimized Network Engineering Tool) Modeler [11] was first demonstrated at MIT
in 1987. It is a comprehensive software environment for modeling, simulating, and analyzing the
performance of communications networks and protocols, computer systems and applications, and
distributed systems. OPNET Modeler contains many models of existing hardware, allowing quick
construction, test and analysis of many types of networks and protocols including from a single
LAN to global satellite networks. Discrete event simulations are used as the means of analyzing
system performance and behavior. The key features of OPNET are summarized as follows:

Object orientation

Systems specified in OPNET consist of objects, each with configurable sets of attributes.
Objects belong to “classes” which provide them with characteristics in terms of behavior
and capability. Definition of new classes is supported in order to address as wide a scope of
systems as possible. Classes can also be derived from other classes, or “specialized”, in
order to provide more specific support for particular applications.

Specialized in communication networks and information systems
OPNET provides many constructs relating to communications and information processing,
allowing high leverage for modeling of networks and distributed systems.
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Hierarchical models

OPNET models are hierarchical, naturally paralleling the structure of actual communication
networks.

Graphical specification
Wherever possible, models are entered via graphical editors. These editors provide an
intuitive mapping from the modeled system to the OPNET model specification.

Flexibility to develop detailed custom models _

OPNET provides a flexible, high-level programming language with extensive support for
communications and distributed systems. This environment allows realistic modeling of all
communications protocols, algorithms, and transmission technologies.

Automatic generation of simulations

Model specifications are automatically compiled into executable, efficient, discrete-event
simulations implemented in the C programming language. Advanced simulation
construction and configuration techniques minimize compilation.

Application-specific statistics.

OPNET provides numerous built-in performance statistics that can be automatically
collected during simulations. In addition, modelers can augment this set with new
application-specific statistics that are computed by user-defined processes.

Integrated post-simulation analysis tools

Performance evaluation, and trade-off analysis require large volumes of simulation results
to be interpreted. OPNET includes a sophisticated tool for graphical presentation and
processing of simulation output.

Interactive analysis

All OPNET simulations automatically incorporate support for analysis via a sophisticated
interactive “debugger”.

Application program interface (API)

As an alternative to graphical specification, OPNET models and data files may be specified
via a programmatic interface. This is useful for automatic generation of models or to allow
OPNET to be tightly integrated with other tools.

OPNET comes complete with a range of tools that allows developers to specify models in great
detail, identify the elements of the model of interest, execute the simulation and analyze the
generated output data. It offers four editors at different component levels to help users to develop a
representation of a system being modeled. These four editors, Network, Node, Process and
parameter editors are organized in a hierarchical way, which supports the concepts of model level
reuse. Models developed at one layer can be used by another model at a higher layer. For
instance, the Network Editor makes use of node and link objects; the Node Editor provides
processors, queues, transmitters, and receivers; and the Process Editor is based on states and
transitions. Figure 44 shows this hierarchical structure. For the purpose of better understanding the
modeling tool we developed for the LONWORKS system, we introduce each of the editors in
details. The parameter editor is always seen as a utility editor, and not considered as a modeling
domain.
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Network Editor

The Network Editor is used to specify the physical topology of a communications network,
which defines the position and interconnection of communicating entities, i.e., node and
link. The specific capabilities of each node are realized in the underlying model. A set of
parameters or characteristics is attached with each model that can be set to customize the
node's behavior. A node can be either fixed, mobile or satellite. Simplex (unidirectional) or
duplex (bi-directional) point-to-point links connect pairs of nodes. A bus link provides a
broadcast medium for an arbitrary number of attached devices. Mobile communication is
supported by radio links. Links can also be customized to simulate the actual
communication channels.

The complexity of a network model would be unmanageable if all networks were modeled
as part of a single-level system. This complexity is mitigated by an abstraction known as a
subnetwork. A network may contain many subnetworks. At the lowest level, a subnetwork
is composed only of nodes and links. Communications links facilitate communication
between subnetworks.

Node Editor

Communication devices created and interconnected at the network level need to be
specified in the node domain using the Node Editor. Node models are expressed as
interconnected modules. These modules can be grouped into two distinct categories. The
first set is modules that have predefined characteristics and a set of built-in parameters.
Examples are packet generators, point-to-point transmitters, and radio receivers. The
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second group contains highly programmable modules. These modules, referred to as
processors and queues, rely on process model specifications.

Each node is described by a block structured data flow diagram. Each programmable block
in a Node Model has its functionality defined by a Process Model. Modules are
interconnected by either packet streams or statistic wires. Packets are transferred between
modules using packet streams. Statistic wires could be used to convey numeric signals.

Process Editor

Process models, created using the process editor, are used to describe the logic flow and
behavior of processor and queue modules. Communication between processes is supported
by interrupts. Process models are expressed in a language called Proto-C, which consists of
state transition diagrams (STDs), a library of kernel procedures, and the standard C
programming language. The OPNET Process Editor uses a state-transition diagram
approach to support specification of any type of protocol, resource, application, algorithm,
or queuing policy. States and transitions graphically define the progression of a process in
response to events. Within each state, general logic can be specified using a library of
predefined functions and even the full flexibility of the C language. A process may create
new processes (child processes) to perform sub-tasks and thus is called the parent process.

7.2 Implementation of LONWORKS Networks Modeling Tool

In this part, we describe how OPNET Modeler was used to model the behavior of the LONWORKS
communication channel in an environment of simulated operation. We will describe the method
used, the applicability to the LONWORKS communication standard, the data and functionality
available, and the limitations of the model.

7.2.1 Background and Operational Description of LONWORKS protocol

The LONWORKS protocol, also known as the LonTalk protocol and the ANSI/EIA 709.1 Control
Networking Standard, are the basic building blocks of the LONWORKS distributed control system.
The protocol is a layered, packet-based, peer-to-peer communication protocol, which provides a set
of communication devices that allow the applications program in a device to send and receive
messages from other devices over the network without needing to know the topology of the
network or the name, addresses, or functions of the devices. Of the most popular fieldbus protocols,

LONWORKS protocol is the only one to provide services at all seven layers of the OSI reference
model.

Under normal operation, LONWORKS offers two techniques for packet transmission:

Acknowledged Messaging: Provides for end-to-end acknowledgement. When using this kind of
service, a message is sent to a device or group of up to 64 devices and individual
acknowledgements are expected from each receiver. If acknowledgements are not received after
the senders timeout, the sender retries transmission.

Unacknowledged messaging: Causes a message to be sent to a device or group of devices multiple

times. No acknowledgements are expected. This message service has the lowest overhead and is the
most popular service.
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Media access: All the network protocols use a media access control (MAC) algorithm to allow
devices to determine when they can safely send a packet. The LONWORKS protocol employs a
sophisticated, unique MAC algorithm with collision avoidance, called the predictive p-persistent
carrier sense multiple access (p-CSMA) protocol [12]. Compared with existing MAC algorithms
such as IEEE 802.2, 802.3, 802.4 and 802.5, p-CSMA has excellent performance characteristics
even during periods of network overload.

Other components of the LONWORKS network are described below:

Channel: A physical unit of bandwidth linking one or more communication nodes. LONWORKS
protocol is medium-independent, which means that the protocol allows all devices to communicate
with each other over any type of physical transport channel. However, each type of channel has
different characteristics in terms of maximum numbers of connections, data-flow rate, and
maximum communication distance. The most frequently used channel type is TP/FT-10, which
supports 78kps data rate, 64-128 maximum devices, and 2200m maximum distance (bus topology).

Subnet: A set of nodes accessible through the same link layer protocol; a routing abstraction for a
channel; EIA-709 subnets are limited to a maximum of 127 nodes.

Node: An abstraction for a physical node that represents the highest degree of address resolvability
on a network. A node is identified within a subnet by its logical node identifier. A physical node
may belong to one or two subnets. When a node belongs to two subnets, it is assigned one node
number for each subnet to which it belongs.

Media Access: A media access control (MAC) algorithm is required by all network protocols. MAC
algorithms are designed to minimize packet collision rate. LONWORKS protocol uses predictive p-
persistent CSMA protocol. *

Betal: Period immediately following the end of a packet cycle. A node attempting to transmit
monitors the state of the channel, and if it detects no transmission during the Betal period, it
determines the channel is idle.

Beta2: Randomizing slots. A node wishing to transmit generates a random delay T. This delay is an
integer number of randomizing slots of duration Beta2.

7.2.2  Basic Media Access Mechanism of LONWORKS

LonTalk uses a unique and also very efficient media access control (MAC) protocol called
predictive p-persistent CSMA to allow nodes to determine when they can safely send a packet of
data. A collision occurs when two or more devices attempt to send data at the same time. The
LONWORKS MAC algorithm allows a channel to operate at full capacity with a minimum of
collisions.

As with Ethernet, all LONWORKS nodes randomize their access to the medium over a minimum
of Whase Beta2 slots, where Wy, has a constant value of 16. A unique feature of LonTalk MAC
protocol is that the number of available Beta2 slots is dynamically adjusted by every node, based on
an estimation of expected network loading, BL, maintained by each node. BL varies from 1 to 63.
Therefore, the number of available Beta2 slots, BL* Wy, , varies from 16 to 1008, depending on
this estimation. This method allows the LonTalk protocol to minimize media access delays with a
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small number of Beta2 slots during periods of light load while minimizing collisions with many
Beta2 slots during periods of heavy load.

Figure 45 shows the finite state machine (FSM) we designed for a LONWORKS node according to
the description of predictive p-CSMA MAC algorithm. For any LONWORKS node module,
starting from IDLE state, it monitors the state of the communication channel, and determines if the
channel is in an idle state. If it detects that the channel is busy, it will enter WAIT state. Otherwise,
if it detects no transmission during the Beta 1 period, it will enter BACKOFF state. Nodes without
a packet to transmit during the Beta 1 period will go back to IDLE and remain in synchronization.
Next, the node generates a random delay time in the interval (0.. (Wypas*BL)-1), where BL is an
estimate of the current channel backlog. The node enters the TRANSMIT state if the communication
channel is still idle when the random waiting time expired. If the transmission is successful, the
node enters the TX_END state. Otherwise, it goes to COLLISION and TX ABORT state. The whole
process keeps repeating when there are more packets coming to the MAC layer and need to be
transmitted. We implemented this FSM into the MAC layer of the LONWORKS modeling tool.

beta1 expires

channel busy

preamble end

random delay
expires &
packet ready

collision detected no collision

detected

Figure 45 Finite State Machine of the LonTalk MAC Layer

Detailed information of the LonTalk protocol can be found in the documentation (ANSI/EIA-709.1-
A)[10].

7.2.3 Model Scope and Limitations

This section provides an overview of the parameterized LONWORKS modeling tool implemented
in the OPNET Modeler. The LONWORKS modeling tool contains a full implementation of the
MAC algorithm of LonTalK protocol, Link Layer [10], and parameter setting of the physical layers.
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It also contains a simulator for the LONWORKS protocol analyzer. The simulation environment
offers a graphical user interface, which allows the user to form, monitor, and analyze a testing
network using “drag and drop” functionality. OPNET Modeler contains libraries for the models of
most standard communication technologies like Ethernet, FDDI, and ATM, which allow the user to
expand a model so that it can be incorporated with a TCP/IP network via iLON 1000 (Ethernet
GATEWAY). Figure 46 shows the GUI of the LONWORKS modeling tool. In the figure, we
shows eight smartcontrol® devices along with a Protocol analyzer (LonManager) connected to the
TP/FT-10 bus channel. Users can drag icons from the “Object Palette” window if they would like to
add more smartcontrol® devices to the channel. The user can also run the simulation by clicking
“run simulation” under the “Simulation” dropdown menu.

Figure 46 GUI of LONWORKS Communication Simualtor

Some parts of the protocol have been simplified, omitted or deferred for later development in view
of the fact that it is intended primarily to study, and analyze the performance at the data-networking
level of the communication channel. We have also reserved several APIs that we may use in future
development. The following table lists the features and parameter settings we provide in the
communication simulator:
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LonTalk MAC Protocol Behavior Modeling

Access Mechanism

Frame Exchange

Deference & Backoff

Data Rate

Input Clock

Transmission

Buffer Size

Framing & Disassembly

Frame Size

Node Auto-addressing

Recovery Mechanisms

Collision Detection

Carrier sense multiple access with collision avoidance
(CSMA/CA) and optional collision detection (CSMA/CD) access
schemes as defined in the standard.

Combined with message type service provided by the

- Transportation Layer: acknowledged message and

acknowledgment exchange for the reliability of data transfer;
unacknowledged message for high-speed requirement of data
transfer.

Interframe spacing Betal and backoff time slot Beta2
implementation. The values are selected based on design
specification from Echelon (the manufacturer of LONWORKS
nodes). Random delay backlog generated from the predictive
estimation of channel load BL.

78Kbps data rate supported by LONWORKS TP/FT-10 bus
channel

1.25Mbps data rate supported by TP/XF-1250 bus channel
Different input clock frequencies of LONWORKS node:
0.625MHz, 1.25MHz, 2.5MHz, 5MHz, 10MHz. Different clocks
have different limitations on packet rate and time slot duration.
Full-duplex transmissions

FIFO processing of transmission requests

Transmission attempt limit of 256 after collision

Packet arrived from a higher layer to the LonTalk MAC layer is
stored in an output buffer. The buffer size is limited to the
adjusted maximum value. Higher packets are dropped once the
maximum buffer size is reached.

Assemble MAC frame before transmission, and disassemble
frame when receiving from PHY layer.

Frame format is defined as MPDU format specified in the
standard, with additional address and message type information in
order to evaluate channel performance under different message
service types.

Frame sizes based on measurements from real LONWORKS
channel are in the range of 10 to 16 bytes long.

All the nodes can be configured for node ID auto-addressing.
Node addresses can also be specified by user. However, no subnet
or group address is supported yet.

Destination address of each packet can be chosen automatically
from address pool of all the nodes.

Retransmission mechanism for data frame based on failure of the
reception of the acknowledgment frame.

Collision detection from physical layer. Normal Mode or Special
Purpose Mode as defined in the standard.

The communication simulator assumes that no propagation delays occur on the communication
channel; only transmission delays are considered. Without the propagation delays on the
communication channel, and since all stations are deferred for integral slot times of Beta2, collision

69



can only occur at the beginning of the transmission cycle. We assume that packet error is only
caused by collisions, and that packet loss is a result of the buffer between the MAC layer and higher
layers being full. In other words, the rest of the channel is ideal. That is, no bit error or packet loss
occurs in the ideal channel.

It is an inherent property of technology development that as soon as a new version of hardware is
released, some of the specifications are changed. Our modeling tool is heavily parameterized and
thus allows significant reparameterization. A user can set physical channel bandwidth, processing
speed of the newly developed Neuron chips, and buffer allocation strategies individually, for each
node in the system, or once for all nodes.

7.2.4 The Structure of LONWORKS Models

7.2.4.1 Network Model

Figure 47 shows a TP/FT-10 bus network topology and the corresponding hierarchical relationship
with an inside view of the node and process models that we have developed for the LONWORKS
MAC model. A uniform node model that follows the LonTalk protocol is designed to process
transmission and reception of packets over a bus link, as illustrated in Figure 48.

A packet generated from the source module of the sending node is transferred to the MAC process
by MAC_JF (mac_interface process), being attached an ICI, Interface Control Information, which is
a specific data structure for information exchange between processes in OPNET. ICI encapsulates
information of increment of backlog, the destination address of the packet, and the type of the data
packet. In the MAC, this information, along with the address of the source node and the original
packet are assembled into a new MPDU (MAC sublayer Protocol Data Unit). This MPDU or frame
will be transmitted to the channel by the transceiver of the sending node. All the nodes on the
multi-access channel will receive this frame, while by extracting the destination address of the
frame header, only the destination node will process this frame. Increment of backlog will be
extracted to update the backlog of the destination node, and the type of packet will be sent to the
upper layer MAC_IF along with the original data packet. MAC_IF will decide to arrange an
acknowledgement according to the type of the received packet, acknowledged or unacknowledged.
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Figure 47 Hierarchical Structure of Network Model

7.2.4.4 Node Model

The node model we developed in OPNET follows the node structure we introduced in the previous
section, as figure 49 illustrates. Module “bus_tx” and “bus_rx” represent a transmitter and receiver
in the physical layer. Module “lon_mac’ 1mp1ements the p-persistent CSMA algorithm of the MAC
sublayer, which will be explained in detail in section 7.2.4.4.3. Module “lon_mac_interface” is the
interface module between the MAC layer and higher layers, working as a data link 1 layer and as part
of the network layer. The solid lines between different modules represent data streams, which
transmit packets or frames, while dash lines notify the busy or collision status of transceivers.
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7.2.4.4 Parameterizations

This section discusses the LONWORKS MAC related configurable parameters available as part of
the simulation model suite. Note that there are two types of attributes provided by OPNET for the
purpose of developing parameterized models: model attributes and simulation attributes.

Model attributes: have a scope that is local to each process model. During simulation, model
attributes appear simply as attributes of queues and process modules. They may be accessed
both to modify and to obtain their value. Model attributes can be declared for a process model
by using the edit model attributes operation of the process editor described in Par L.

Simulation attributes: have the purpose of providing a parameterization mechanism at the
system level, rather than at the level of system building blocks.

node_1
lon_device_ack
x position 80.4
¥ position 69.4
threshold 0.0
icon name |Device:Terminal
TIM source none
altitude 0.0 %
altitude modeling relative to subnet-platiy
condi tion . enabled geg ¢
finaneial cost 0.00 =
Ipriority 0
user id 0
lon_mac. Device Address
lon_mac. Lon Parameters
lon_mac. Physical Layer Characteristid{Special Purpose Mode
lon mae. endsim intrpt |disabled i ]

\

-y
{
3

{lon_mac_inf. Destination Address
{lon_mac_inf. Input Clock

[Randon

Figure 50 Various MAC attributes

Each LONWORKS node has its own set of attributes. The attributes come from different modules
inside of the node model. In Figure 50, we can see a LONWORKS MAC address parameter that is
an internal node address and is usually set as auto assigned unless a specific configuration is
required. The destination address of each packet generated from this node can be set as random
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unless a specific target is assigned. At the same time, both the optional collision detection feature
and the message type feature (acknowledged or unacknowledged) can be set. The clock frequency
of nodes and data rate of transceiver can be set as well. The interarrival time of packets generated
from the source module can be set as a model attribute or promoted to simulation attribute. When a
series of packet interarrival times are assigned during simulation, a series of channel performance

indices under different network loads can be outputted to a file, and corresponding curves can be
plotted and observed.

7.2.4.4  Process Models of LONWORKS Node

The following table enumerates the process models used by the LonTalk MAC model suite.
Additional details on these process models are provided in subsequent sections.

Table 6 The list of Process Models

lon Mac Process models

Name Location Summary

source Higher Layer Module | Provides a simple example of upper layer
interfacing with the LonTalk MAC protocol.
The process generates packets to the other
devices in different arrival rates, by different
probability distributions.

lon_mac_inf Higher Layer Provides an interface function between upper
Interface Module layer and MAC layer. This process generates
auto-addresses of devices and packet
destinations.
lon_mac MAC Module Performs media access control for the

LONWORKS communication interface in
TP/FT-10 bus configuration. The module can
operate in several different data rates of

channels.
bus_tx Port Module Implements transmitter port over a bus
channel
bus rx Port Module Implements receiver port over a bus channel
sink Higher Layer Module | Provides a simple example of upper layer

interfacing with the LonTalk MAC protocol.
The process simply discards arriving packets.

7.2.4.4.1 Source Module

The traffic generator process module was developed based on the existing simple_source process
model that is included with OPNET modeler. It was developed to introduce a flexible way to
generate traffic into the LONWORKS communication channel. The end-user can generate not only
the different types of network variables, but also the types of traffic flows according to the specified
probability distribution. For example, by adjusting the parameters in Model attributes of the source
process node, users can generate an integer-type standard network variable data flow with an
exponential distribution. Figure 51 shows the FSM diagram for this module: After initializing all
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the state variables in init and init2 states, the module sets a self-interrupted timer according to the
distribution of the data rate for packet generation. Every time the timer expires, it generates a pre-
defined type of packet and forwards the packet to lon_mac_inf module.

[PACKET_GENERATE)/ss_packst_generate[];

1

T ——

Figure 51 Process Model of source Module

7.2.4.4.2 lon_mac_interface Module

The FSM of the process module “lon_mac_interface” is illustrated in Figure 52. In init and init2
states, the module initializes its state variables used in the entire process. Then the node registers
itself and makes connections with other process nodes that are connected to the lon_mac_interface
node. After leaving the initial states, the module switches among idle, ack_timer, and two packet
processing states (upper_arrival state and mac_arrival state). The module enters the idle state and
waits for an incoming event. The event can be either an incoming packet from the higher layer, an
incoming packet from the MAC layer, or the expiration of the clock timer when using
acknowledged message service. When a packet arrives from the upper process, the
UPPER_LAYER PKT_ARVL event is triggered, and the state machine enters the upper_arrival
state where the type of packet is determined and the required processing and encapsulation are
executed. Then the packet is forwarded to the MAC layer where it will be queued and will await a
transmission opportunity.

During the operation, if unacknowledged message service is selected, the module only handles
packets from two directions and switches the states among idle, upper arrival and mac_arrival. If
acknowledged messages are being used, every time the module receives a packet from the source, it
will add an entry to a model maintained FIFO queue according to the destination address of this
packet. At the same time, the process will start a virtual clock timer based on self-interrupts to wait
for an acknowledgement from the receiving node. ~When an acknowledgement-type packet is
received before this timer expires, MAC_LAYER PKT ARVL event is triggered and the
corresponding entry for that ACKD-type packet will be erased from the queue. However, if
TIMER_EXP is triggered, the expired ACKD-type packet will be retransmitted and a new timer
will be started.
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Figure 52 Process Model of lon_mac_inf interface Module

7.2.4.4.3 lon_mac Module

Next we discuss the operation of the finite state machine of the MAC sublayer. As we can see in
Figure 53, we divide the states (other than the initialization states) into two stages. Stage 1, consists
of states IDLE, BUSY and BACKOFF. The purpose of this stage is to “grasp” the channel and send
a frame waiting to be sent. Entering the IDLE state means that the node is waiting a Betal duration
to confirm that the channel is indeed idle. If the channel is still idle after a Betal period, the node
enters the BACKOFF state to schedule a random backoff before either sending the frame or
entering the BUSY state. If the node is in BUSY state, it means that another node is transmitting a
frame into the channel. The node receives this frame and waits for the end of its transmission, i.e.
the channel becomes idle again. While in the BACKOFF state, if the random time designated by the
backoff timer expires before the channel is “grasped” by other nodes, then the node can send its
frame if it has a frame waiting to be sent. If the channel has been “grasped” by another station, we
reenter BUSY state to wait for another chance.

In each state, the station has the ability to monitor the channel and to process frames received from
the channel. A buffer is maintained in this stage and packets from higher layers are first queued in
this buffer. If the buffer is full, then packets will be dropped. This simulates the limited processing
ability of a node. A backlog variable is maintained here to estimate the traffic load of the network
and to produce the corresponding backlog.

The other one, stage2, consisting of states TRANSMIT, TX END, COLLISION and
TX_ABORTED, is designed to process the frame being transmitted. With the collision detection
feature, a collided frame can be stopped instantly or after a preamble and arrange for
retransmission. After a successful transmission, the station will enter the IDLE state and contend to
transmit the next frame in the queue.
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Figure 53 Process Model of lon_mac module

7.2.4.4.4 sink Module

The FSM of the process model sink module is illustrated in Figure 54. This is a simple FSM

structure. All it does just accepts the incoming packets from lon_mac_inf module and destroys
them.

»

Figure 54 Process Model of sink Module

7.2.4.5 Process Model of Protocol Analyzer

The LonManager Protocol analyzer (LPA) in hardware implementation allows manufacturers,
system integrators, and end-users to observe, analyze and diagnose the behavior of installed
physical LONWORKS networks. In our modeling tool set, the simulator of LPA allows users to

77




perform the same functionalities as well obtain as detailed statistics, channel collision rate
detection, estimation of backlog window size efc, which allows users to understand better how the
network behaves.

This node model dis a
similator of
LonManager T™M
Protocol fnalyzer.

sink

coll

Figure 55 Layered Structure of LonManager Protocol analyzer
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Figure 56 FSM of LPA model

In our implementation, a sophisticated transaction analysis system examines each packet as it
arrives and associate related packets to aid the users or developers in understanding and interpreting
traffic pattern. The simulator analyzes the communication channel by collecting, time stamping,
and saving all information of network communications into either OPNET vector or scalar files
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that can be viewed and analyzed. Multiple LPA simulators can be used at the same time, which
allowing end-users to collect packets from multiple channels.

We show the layered structure of the node model for the LPA simulator in Figure 55. Module
“bus_rx” represents the receiver in the physical layer of the LPA. Module “lonpa_mac” implements
the FSM (Figure 56) for the LPA. Compared with the node model we developed for smartcontrol
devices, the LPA node model does not come with a transmitter or any packet generators since all
the protocol analyzer does is monitor the communication channel. Again, the solid lines between
different modules represent data streams, which transmit packets or frames, while dash lines notify
the busy or collision status of transceivers.

7.2.5 Model Interface
7.2.5.1 Packet Formats

The following Table 7 enumerates the packet formats used in the LonTalk MAC model suite.

Table 7 Packet Format

LonTalk MAC Packet Format

Name Description

lon_mac Represents the LonTalk MAC packet format. This packet
format allows for the encapsulation of higher layer protocol data
and carries control fields such as source and destination address,
backlog increment, message service type.

Figure 57 shows the frame format of the MPDU we designed in OPNET, which is a slightly
different from what the protocol specifies. Some fields such as length, domain and full version of
address format are neglected in this format under the assumption that we are using one subnet, one
group and one domain in the modeling tool. We only implemented the fields that affect the traffic
performance and characteristics. These fields include all the MPDU headers, which are priority bit
(Pri), alternative path (Alt_Path), and increment of backlog (Delta_BL). The frame format of the
MPDU also includes part of the NPDU header (source and destination address and TPDU_Type).
Pri, Alt_Path, and Delta_BL have the following semantics:

Pri: 1-bit field specifying the priority of this MPDU: 0=Normal, 1=High.

Alt_Path: a 1-bit field specifying the channel to use. This is a provision for transceivers that
have the ability to transmit on two different channels and receive on either one
without the need to instruct the transceiver to explicitly receive on a specific channel.
The transport layer sets this bit for the last two attempts (for acknowledged and
request /response services), unless requested to specify the alternate path for every
transmission. For any packet received that has the alt_path bit set and that requires
an acknowledgment, response, challenge, or reply, the same alt_path bit shall be set
in the corresponding acknowledgement, response, challenge, or reply.

Delta BL:  a 6-bit unsigned field (>=0); specifies channel backlog increment to be generated as a
result of delivering this MPDU.,
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Figure 57 Frame format of MAC layer Protocol data Unit

Figure 58 shows the packet structure implemented in the OPNET packet format editor.

Figure 58 Frame format from OPNET

7.2.5.2 ICI Formats

OPNET uses ICI (Interface Control Information) format to formalize interrupt-based inter-process
communication. Defined in the format are the names of fields within the ICI, their data types, and
their default values. The following Table 8 enumerates the ICI format used in the LonTalk MAC
model suite. Figure 59 shows the ICI format we designed in the OPNET ICI editor for
lon_mac_request. Figure 60 shows the ICI format for lon_mac_ind.

Table 8 ICI Fomrat
LonTalk MAC ICI Format
Name Description
lon_mac_request Used in conjunction with packet transfer from

lon_mac_infto the lon_mac. The attributes carried in
this ICI specify the source and destination address, type
of upper layer protocol data packet.

lon_mac_ind Used in conjunction with packet transfer from lon_mac
to the lon_mac_inf. The attributes carried in this ICI
specify the information along with the packet received
by MAC layer ‘
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Figure 60 ICI Attributes of lon_mac_inf

7.2.6  Available Statistics

The usefulness of a simulation model is dependent on the statistics it provides of the physical
system. This is connected to the statistics it is able to generate when it runs. In our LONWORKS
modeling tool we have implemented a comprehensive statistical set of “points of measurements”.
These statistics are stored in two types of output files: vector and scalar. Vector output files trace
the course of a statistic over an interval of time; each data point has an associated time at which it
was logged. Scalar output files store a set of singular statistic values grouped by simulation. Table
9 lists the statistics being outputted to the vector files, while Table 10 lists the statistics being
outputted to the scalar files. Figure 61 shows the OPNET implementation of available statistics.
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Table 9 Statistics stored in vector output file

Name Summary

Backlog Size Index of backlog window size that the current node can
randomly choose from before transmission while contending for
the medium.

Collision Count Number of collisions encountered by the mac layer of this node.

End-to-End Delay (sec) End-to-End delay of the packets accepted by this node.

Packets Offered per Node | Total number of packets sent by current node.

(packets)

Packets Offered per Node | Average number of packets sent by current node.

(packets/sec)

Packets Received per Total number of packets received by current node.

Node (packets)

Packet Received per Node | Average number of packets received by current node.

(packets/sec)

Queue Size of Packets Number of packets received from higher level being held at

being held queue of MAC layer.

Traffic Offered per Node | Total data traffic (in bits) sent to the mac layer from a higher

(bits) layer.

Traffic Offered per Node | Averagedata traffic (in bits) sent to the mac layer from a higher

(bits/sec) layer.

Traffic Received per Node | Total number of bits forwarded to higher layer by the mac layer.

(bits)

Traffic Received per Node | Average bits per second forwarded to the next-higher layer by

(bits/sec) the mac layer in this node.

Transmission Attempts Number of transmission attempts made by the mac layer of
current node before frames are successfully transmitted.

Table 10 Statistics stored in scalar output file for LONWORKS node device

Name Summary
Average Offered Load Average packet rate offered by the source as channel load
(packets/s)
Collision Rate (%) Collision rate of this specific node, percentage of collisions

with ratio to the total times of transmission attempts

Node Throughput (packets/s)

Throughput of this specific node

Channel Throughput (packets/s) | Total throughput measured on the channel

Dropped Packets (%)

Percentage of packets that are dropped due to fullness of
buffer
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Figure 61 Collectable Statistics in LONWORKS Modeling Tool

7.2.7 Files Included in the Model

This section gives a brief overview of the files required for this model suite in
<opnet_dir>/op_models/ and <opnet_dir>/op_models/lon_mac_ack directory.

lon_link tp.lk.m Bus channel and bus link tap model file

lon_mac.pk.m Model file for MAC packet format

lon_mac_ind.ic.m ICI format file of lon_mac_ind

lon_mac_request.ic.m ICI format file of lon_mac_request

lon_device.nd.m Node model file

lon_mac.pr.m Model file, source code and compiled object file for MAC
lon_mac.pr.c process model

lon_mac.i0.pr.o
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lon_mac_inf.pr.m Model file, source code and compiled object file for MAC
lon_mac_inf.pr.c Interface process model
lon_mac_inf.i0.pr.o

lon_mac_<net_name>.prj Project model file

lon_mac_<net name>- Network model file for a specific scenario
<scenario>.nt.m

lon_mac_<net_name>- Simulation sequence file
<scenario>.seq

<simulation_output>.ov Output vector file generated by simulation in order to
store time-series statistical data

<simulation_output>.o0s Output scalar file generated by simulations in order to
store individual values that capture summarized behavior,
performance, or parameterization of a simulation

7.3 Analytical Models of LONWORKS p-CSMA algorithm

To validate the performance of OPNET-based LONWORKS modeling tool, two analytical models
of the simplified version of LONWORKS protocol were developed. The first analytical model is
developed from the viewpoint of the communication channel, from which we derived the
probability of collision on the channel; the second analytical model is developed from the
viewpoint of the node that is connected to the channel. The analytical approach that we followed
here is based on [12].

7.3.1 The Behavior of communication channel

In LonTalk’s CRA, each packet-ready node that is connected to the channel detects whether or not
the common channel is idle, and then waits for sf, seconds before it attempts to transmits its
message. Here s is a random number, selected from {1, 2, ..., S}, and j, is a fixed constant. When
the nodes use an unacknowledged message service, the backlog window size S of each node
remains in the lowest level most of the time during the transmission and is likely equal to 16 (this
number may be adjusted due to the collisions). '

When the node with the smallest value of s gains access to the channel (provided it is the only node
that selected this value of s) it will transmit. The other nodes will sense the active transmission,
begin receiving the message, and temporarily abort their attempt to transmit. Nodes assume that a
transmission is complete when the channel has been idle for 8, seconds (B, is a fixed constant).
Once B; seconds have elapsed, each node will select a new value of s, and again wait for sB,
seconds before attempting transmission. If two nodes selected the same (lowest-value)
randomization slot s—and thus attempt to transmit at the same time—a collision occurs. When a
collision occurs, all nodes wait for the channel to remain idle for B; seconds before restarting a new
random sf8, waiting period. If we use the following notation:
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¢ N=  the number of nodes in the network
o §= an index; time since the channel was idles € {1,2,..., S}

e S= the number of slots in the randomization set (S=16),

Assuming the network is operating under a heavy steady state load and N nodes are competing for
the channel, it can be shown that for a fixed S, the probability that a collision has occurred in the s™
time slot after the channel returned to the idle state is:

s N
Pch_coII = Z Z B, > (Eg-1)

s=1 n=2

where P _ is the probability that n>/ nodes collide in the s™ slot, expressed by the following
equations:

(%) , fors=Sandn=N
P, =1 (Eq-2)

N! (1]"(S—s)”‘” .
_ = , otherwise
\n!(N—n)! S S

7.3.2  The Behavior of single node connected to channel

When the nodes connected to the channel use message type service other than unacknowledged, the
backlog window size of each node will not maintain the lowest level. The number of slots in the
randomization set S varies according to the different values of backlog window size. A node-
oriented model needs to be developed in order to analyze the change of window backlog size. The
key assumption used in this analytical model is that, for a given node that operates under
LONWORKS protocol, a transmission always collides with probability p regardless of the backlog
window size used to choose the random waiting period for the reservation attempt. We divide our
analysis of the LONWORKS communication channel into two parts. In section 7.3.2 we consider
the behavior of a single node that is connected to a LonTalk bus channel to compute the collision
probability p and the stationary probability 7 that the station transmits a packet in a randomly
chosen time. This probability is independent of the reserved access scheme employed by the
stations. Then, by examining the events that can occur in a randomly chosen backlog window,
throughput performance is expressed as a function of probability 7.

We concentrate on “saturation throughput” for a fixed number of stations n. This is a fundamental
performance index defined as the limit reached by the system performance throughput as the
offered load increases, and represents the maximum load that the system can carry in stable
conditions. In saturation, every node that is connected to the bus channel always has a packet
available for transmission immediately after the completion of each successful transmission.

Let b(?) be the stochastic process that represents the backlog time counter for a specific station.
Process b(?) represents the remaining backlog time before the node starts to transmit the packet. A
discrete, integer time scale is adopted where ¢ and ¢+ correspond to two consecutive slot times,
and the backlog time counter of each station decreases at the beginning of each slot time. The
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backlog window size for every station depends on the collisions and on the successful reservation
attempts experienced by the station in the past. As a result, process b(#) is non-Markovian.
Following the control-networking standard of ANSI/EIA 709.11, we define for

convenience W, =W, (1+1i), where W is the base window size of the backlog counter and, by

default, is equal to 16. The maximum backlog value ‘m’ is 63. We designate s(?) to be the stochastic
process representing the backlog stage (0,..., m) of the station at time ¢.

As we mentioned before, the key assumption of this model is that a packet transmission collides
with the same probability p regardless of the backlog time counter used for this transmission.
Based on this assumption, we modified Bianchi’s discrete time Markov chain model [14], which
was originally developed to study the MAC algorithm of IEEE 802.11 protocol for wireless local
area networks. we can states {s(?), b(?)} by this discrete time Markov chain model presented in
Figure 62.

(1-p)/(Wo+1)
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pI(Wi+1)
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Figure 62 Markov Chain model for the backlog window size
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Figure 62 shows that when a node connected to the channel wants to transmit a packet, under the
conditions of saturation, it will generate a random waiting period (rwp) according to the backlog
window estimation. It then decreases the rwp from the value of the backlog window size for the
entire slot unit until it reaches zero. After a successful transmission attempt, the backlog stage is
decreased and the new rwp value is uniformly chosen from the range size decreased by Wj,s.. The
mode] also shows that after an unsuccessful transmission attempt, the new rwp will be chosen from
a larger range. After a successful transmission attempt at stage 0, the new rwp will be chosen from
a same range and after an unsuccessful transmission attempt at stage m the new rwp will not be
further increased.

If we designate the short notation P{i, j, |, jo}= P{s(t+1) =i, b(t+1)=j, |s(t) =i,
b(t) = j,} , we can find the transition probabilities from Figure 62, which are:

PG, ji,j+1} =1, i€ (0,m), j € (0,W,-1) (Bq-3)
PG, ji+1L,0} =P ic(0,m=1), j e (O,7), Eq-4)
W,.+1
P{i+1,j|z',0}=Wp L, ieOm=1),j O, (Bq-5)
i+l
1-p .
P{0,k]0,0}=—2 je(0,W)), (Eq-6)
W, +1
P{m, j|m,0y=—L— je,W,), (Eq-7)
W +1

m
Equation-1 states that after the node generates the random waiting timer according to the estimated
backlog window size, it keeps decreasing until it reaches the zero state of the current layer. If the
transmission of the packet at time 7 is successful (probability is 1-p), the node moves one stage
toward stage 0 and the estimated backlog window size (represented by b(t)) is decreased by 1. The
new random waiting period for the transmission of the next packet will be generated uniformly

from a smaller range (0, ;), which is represented in Equation-2. Equation-3 shows that if the

transmission of the packet has failed, which means that a collision has occurred with probability p,
the node moves to a lower stage and the estimated backlog window size is increased by 1. The new

random waiting timer will be generated from a larger range (0, ;). Equation-4 considers the

special condition of the node being at stage 0 when it transmits a packet successfully. Equation-5 is
the special case when the node is at the last stage and it fails to transmit a packet.

We designate b, ; = }im P{s(@®)=i,b(t)=j}, ie(0,m), je(0,7,) to be the stationary behavior

after the process has been running for a long time. After some algebra and applying the method of
induction, it can be shown that

bi,O = [T‘H“) bo,o 5. (Eq-8)
p

From backlog stage s(t), t=0, we can establish another equation for steady state probability
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_PWyt1-j

o, j W +1 [bo,o (1-p)+ bl,o (1-p)] (Eq-9)
0
From backlog stage s(t), t=m, it satisfies
w,+1-j
ms = bop  byop] (Eq-10)

m

For the remaining of s(t) (¢ € (1,m—1)), we have

W+1-j
i = tW 1 / (6,102 + b, o (1= P)]. (Eq-11)
Substituting Equation-6 into the above three equations, we get one simplified form:

_VVi+1_jb

iJ W +1 i0° i € (0’ m)’ j € (03 VV: )) (Eq'12)

Since the sum of the probébilities of all the states in Markov Chain model is equal to 1, we have,

W

35, =1, (Eq-13)
=0 j=0
From which we can further derive
by < p i
— — | (W +2)=1. Eq-14
> gll_p 7, +2) (Eq-14)
Since
W,=BL(1+i)-1, ie(0,m), (Eq-15)
we have

2

(BL + 1)i (%J + BLii(i—_p—I—)-)

boo =

(Eq-16)

We can now express the probability 7 that a station transmits in a randomly chosen time slot. As
any transmission occurs when the backlog time counter is equal to zero, regardless of the backlog
stage, it is:
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T=Y by, (Eq-17)

After substituting and applying the equation of Arithmetic-Geometric series, 7 can be expressed as

T= m+l 2 m+l my * (Eq-18)
(BL+1)+ BL2A= )"+ @m+ Dp™ —(m+1)p")

@-p)"™ = p"H(1-2p)

Probability 7 depends on collision probability p which is still unknown. The probability p that a
reservation attempt collides is the probability that at least one of the remaining n-1 stations transmit
in the same time slot. Hence, we are able to get another equation for p and t:

p=1-0-7)" (Eq-19)
Equations 10 and 11 form a nonlinear system of the unknown p and 7. The system can be solved by
employing numerical methods evaluating p and 7. It is easy to prove that there is a unique solution
to this nonlinear system since, in Eq-10, 7 is a continuous and monotonically-increasing function in
the range of p € (0,1). In Equation-11, 7 is a continuous and monotonically-decreasing function in
the same range.

7.3.3  Throughput analysis of the LonTalk bus channel

Let S be the normalized system throughput.
Based on the p and 7 evaluated in Section 2.1, throughput efficiency can be evaluated. We define
P, as the probability that at least one transmission attempt occurs in the given time slot. For a

LONWORKS network of n nodes, each transmitting with probability t, P,

r

is given by

p,=1-(1-7)". (Eq-20)

The probability P;, that an occurring transmission is successful, is given by the probability that one
node transmits and the remaining n-1 nodes remain silent provided that at least one transmission
occurs in the channel:

P = nr(1-7)"! .
P

tr

(Eq-21)

A successful transmission in a randomly selected slot occurs with probability PP and the time to
transmit a packet is given by P, Py(pkt _length/c), where pkt_length is the length of a packet and ¢ is
the data transfer bit-rate of the LONWORKS bus channel (for TP/TF-10 channel, the bit-rate is
78kbps) . The average slot duration can be evaluated by considering that with probability I-P, the
slot is empty, with probability P,.P,the slot contains a successful transmission and with probability
P,(1-Py) the slot contains a collision. Thus, throughput efficiency S can be evaluated by dividing
the time to transmit a packet by the average slot duration
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Figure 63 Collision Probability of Channel versus. Number of Nodes

Figure 64 shows the collision probability of specified node under the conditions of saturation. The
dashed line represents the analytical results gathered from Equationi-18, 19. The solid line
represents the result gathered from simulation. During the simulation, every node in the network
always tried to transmit a packet as long as the node senses that the channel was idle. We set the
parameters of simulation according to the assumption of our node-oriental analytical model; The
service type of transmission was “acknowledged”, which results in dynamic adjustment the size of
randomizing window to the current estimated channel backlog BL ranging between 1 and 63. The
simulated nodes on the channel were set to SMHz again and TP/FT-10 media-type network was
still used.

From the figure we can see that the simulation results match the trend of the analysis, with greater
discrepancy for networks with small number nodes connected on it. In these small networks, the
underlying assumption of our analysis—namely that every node is ready to transmit whenever the
channel is available—does not hold due to hardware limitations®. As a result actual collision rates
are lower than those predicted by Equation-18 and 19. For networks with large number of nodes,
the channel is occupied with activity and now the channel, not the local node processors, becomes
the limiting factor in the system. Messages in the media access processor begin to queue up,
guaranteeing that whenever the channel returned to idle, every node in the network would position
itself in the transmission queue.

# Under our simulation conditions, the channel has a capacity to carry approximately 225 messages per second, but each
node can only transmit approximately 60.5 messages per second. (These statistics were also obtained in experiments with
physical hardware.) Under these conditions, nodes often do not compete for the channel, thereby lowering the probability
of collision. The node processor responsible for physical media access is often idle as it waits for the other processors in
the node to prepare the next message.
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7.4.2  Validation of Channel Throughput and Bandwidth Utilization

In order to compare the accuracy of our modeling tool, we compared the results of simulation to the
results gathered from measurement of physical system. We demonstrate two examples in this
section. One uses six (6) programmable smartcontrol devices while the other uses eight (8) devices.
In both cases, all the smartcontrol devices were connected with twisted-pair wiring and configured
to transmit at 78.125 kbps. All the nodes are programmed to transmit floating-point type network
variable to a neighboring node according to the variable rates. We configure exactly the same
settings in the LONWORKS modeling tool.

Figure 65 and 66 are the result of simulation and hardware test for a bus channel with six (6) nodes
connected on it plotted in one graph, which channel throughput (Figure 65) and bandwidth
utilization (Figure 66) as functions of the traffic offered by each node are compared. The channel
throughput is expressed in messages transmitted per second, which is the actual message load to the
network. The bandwidth utilization is defined as the time used for transmission divided by the total
elapsed time of simulation. In both of the plotting, the line crossed by the circle represents data
gathered experimentally; the line crossed by the star represents the corresponding throughput rates
predicted by our modeling tool.

Figure 67 shows the channel throughput for the case of eight (8) nodes and Figure 68 shows its
bandwidth utilization.

The simulation model matches the real system well. We note that under light traffic load, the
channel throughput increases linearly until a saturation point.
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_ P P (pkt _length/C)
(I-P,)o +P,T, +P,A- B,

(Eq-22)

where T is the slot duration when a successful transmission occurs, T, is the slot duration for a
collision involving two or more simultaneous frame transmissions and ¢ is the unit slot time of
backlog window.

7.4 Model Validation

We discuss in this section numerical results concerning the performance of the LONWORKS
modeling tool. In addition to the analysis presented in section 7.3.3, simulation results of our
communication simulator have been compared to the results gathered from physical test platform.
Verification and validation of the modeling tool are essential if the results of those simulations are
to be trusted. The purpose of the comparison are twofold: 1) to cross-validate the results obtained
from two analytical models, and 2) to experiment with variations of the scheme, traffic patterns,
and network loads which are not easily represented by the present analysis.

7.4.1 Validation of Collision Probability

Figure 63 illustrates the collision probability of communication channel as a function of the number
of nodes in the channel for the number of slots in randomization set is fixed value and equals to 16
slots. Dashed line is the analytical result gathered from Equation-1, and Solid line with ‘*’ symbols
indicates the result gathered from simulation tool. In each simulation run, every node in the network
attempted to transmit repeatedly an unacknowledged floating-point network variable to a
neighboring node as fast as possible. The simulated nodes on the channel were set to “SMHz
neuron processors” and they are all connected to TP/FT-10 media-type network at 78.125 kbps data
rate.

As expected, the collision probability increases with the number of nodes increases. The OPNET
simulation results match the collision rates predicted by Equation-1,2 closely. As we can see from
the figure, when the network size and number of collisions increase, the difference between the
analytical result and simulation result also increases, since our assumption of a fixed S is no longer
valid when there are more nodes that compete for the channel. This situation results in increasing
number of collisions and backlog window size. Actually, the increase in the value of S by the

protocol allows the physical network to have a better collision rate than the rate our analytical
model predicted.
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7.4.3 The Case Study

In this section, we present a case study of the communication simulator. We studied a bus topology
channel and four nodes connected on it.

During the experiment, we assume that each node transfers standard floating temperature-type data
to its neighboring node at the data rate of 60 messages/sec. All the nodes use the UNACK service
to communicate with each other.

After the network by using the GUI of the communication simulator (Figure 46), we initialed the
parameter settings in the window of node attributes (Figure 50), and ran the simulation 60 seconds.

Figure 69 Channel Backlog (UNACK Service)

Figure 69 illustrates the quantity of backlog size changes as time changes for each node. Since we
used UNACK service type transmission, the predictive part of the MAC algorithm does not
dynamically expand the estimation of backlog size, which causes the backlog size of each node to
remain at 1; the node behaves like a simple p-persistent algorithm with p=0.0625. We also show
the estimation of backlog size for the ACK service in Figure 70. Compared to the figure of
UNACK service, we notice that the estimate of backlog size is dynamically adjusted throughout the
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simulation. The ACK service activates the predictive algorithm, which results in dynamic
adjustment the size of the randomizing window size according to the current estimated backlog size
BL. Because BL ranges from 1 to 63, predictive p-persistent CSMA algorithm operates under
p=0.0625-persistent under light traffic load conditions and p=0.0099-persistent in situations of
overload. Between these bounds p varies dynamically according to the current load conditions.

Figure 70 Channel Backlog (ACK Service)

Figure 71 shows the time history of collision rate for every node. We can see that the number of
collisions fluctuates between 0 and 10. The analytical prediction (see Figure 63) with four nodes is
slightly higher than 10%. The different occurs because the rate of generating packets for each
node in our study case (60 messages/second) is lower than the saturation-of-traffic conditions that
we used in the analytical model.

Figure 72 shows a simulation results of the end-to-end delays for every node. End-to-end delay is
defined as the time between a packet is ready to be transmitted and it is received. Figure 73 shows
the number of transmission attempts, Figure 74 shows additional statistics.

7.5 Conclusion

We have developed a communication simulator based on OPNET, which describes LONWORKS
network communication behavior. The simulator assumes that the nodes are characterized in terms
of basic communication parameters, and does not use specific realization of actuators and
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controllers. Comparison with other tools and physical measurements demonstrate satisfactory
prediction performance of the simulator.

| Transmission Attemy
JAE

Figure 71 Counting of Collision (UNACK Figure 73 Transmission Attempts (UNACK
Service) Service)

ms,

Figure 72 End-to-End Delay (UNACK Figure 74 Additional statistics (UNACK
Sel'Vlce) Service)
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8. CONCLUSION AND OUTLOOK

At the conclusion of Phase II the sponsor possesses a Network Simulator prototype for full-scale
simulation of distributed control architectures. The sponsor also possesses a Communication
Simulator for rapid comparison of distributed network designs at a high level of abstraction. Both
simulators are suitable for networks with few scores of nodes, and were validated on small and
medium scale physical systems, ranging from 4 to 108 nodes.

As an immediate short-term extension of the project, we recommend a dissemination and education
effort that will demonstrate and test the simulation prototypes with Navy practitioners. This effort
would require extended documentation and teaching materials, pilot one-on-one training and
demonstration sessions, and several full-scale workshops to Navy engineers.

The primary objective of a third phase of the project is to provide a simulation tool that can handle
large-scale distributed control systems involving up to 1000 nodes. We expect this jump to high
node counts to challenge the computational efficiency of our software design. It is likely that a
single desktop PC will not provide enough computing power to solve the problem in a reasonable
amount of time. We may need to attack the problem with several multi-processor machines, and
engage in parallel processing.

In Phase III, we also plan to extend user-interface capabilities to process directly Neuron-C code
developed for LonWorks nodes. Our simulation environment will accept the same code that a
design engineer writes for a hardware target. We also plan to extend the tool’s capabilities beyond
LonTalk, providing support for additional industrial networking protocols (possibly Profibus,
Foundation Fieldbus, or FAIRNET).

In the final phase of the project we will also introduce aufomated testing facilities to perform
sensitivity analyses and search for the “weakest link”. The tool will allow the design engineer to
perform directed searches to find input scenarios that lead to instabilities.
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APPENDIX I : DEVICE AND PLANT APPLICATION DEFINITION FOR CODE
GENERATION AUTOMATION

CONTENT

Application Program Conversion

Scheduler Simulation

Timer Expiration Handling Functions

Network Variable Definition

Network Variable Propagation

Plant Simulation Process
I/0 Definition

Network Interface Update Functions

The LonTalk Network Simulation Configuration Tool automates the process of LonWorks
network simulation generation. The network device application programs are written in
Neuron C. Unfortunately, due to its requirement of specialized APIs and compilers, the
Neuron C language cannot be supported directly in the simulation. A translator is
employed in this situation to convert the user specified application program into the format
that satisfies the requirement of the simulation and a standard C/C++ compiler. In addition
to supporting the application program, the translator is also used to process the simulation
code for the plant and to embed the simulation code into the simulation tool supported
structure. This document defines the format and implementation of the application
translation and simulation.

Application Program Conversion

The LonTalk network simulation is developed in C++. The application program simulation
code is required to comply with that format and be implemented as C++ classes. The
translator will translate the application programs and compose them into a simulation code
compatible format. The devices that have the same applications will be defined as objects
using the same application program class. The translator converts node application
programs in NC format to a unified format called femporary file that is supported by the
LonTalk network simulation API. The converted code is reconstructed and composed into
the target code. The farget code of the translator contains a header file appgm.h and a
source file appgm. cpp in C++. An include.h file is also constructed to hold the included
header files. The user defined network variable types in the NodeBuilder Resource Editor
are stored in a user.h file.

The maximum number of application programs in a network simulation is defined as N.
Each of the application programs is defined in a class. Thus there are N application
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program classes defined in the appgm.h, no matter how many application programs are
actually specified by the user. They are identified by the number » at the end of the class
name (where # is a number from 1 to N). An unused class is defined as a class that has no
member variables and no member functions. But they have one constructor with the same
arguments according to the simulation requirement.

class CAppgmn : public CDevice

{
public:

CAppgmn (IDeviceAPI * pIAPI,uint8 uid);
}

CAppgmn: : CAppgmn (IDeviceAPI * pIAPI,uint8 uid)
:CDevice (pIAPI,uid)
{}

The translator converts the application program and fills the translations into the empty
classes. In the header file, where the classes for the simulated application programs are
declared, variables and functions are declared as protected members in a class. Every
global variable including the defined constant, timer and network variables are defined as
the members of the corresponding class. The data type definitions are also included in this
class. The following summarizes the conversion of different parts of code in Neuron C.

1. Include Files

A header file include.h is introduced to hold all the included files in the device
application NC source code. The include.h file is included in the device application
simulation header file. The translator creates the include.h file. When scanning
each NC files, the translator detects the included files and adds them into the
include.h file.

2. Defined Constant

In different application programs, defined constants may have different values for the
same constant name. The simulation code integrates all the application programs into a
single file. Therefore, this format results in a redefinition problem. To avoid potential
problems caused by the redefinition, the defined constant is replaced by the numeric
constant.

3. Data Type Definition
A data type definition problem may occur if the same data type name is defined as

different data types or structures. To maintain the definition of the data type, the data
type is defined in the application program class before the declaration of any variables.

101



The Neuron Chip is an 8-bit system, while the simulation is run on a 32-bit Wintel
system. Their data type definition is different. To fix the difference, we convert the
Neuron C data type to the appropriate data type in a Wintel system that has the same
type and size. However, enumerated data types are an exception since they are defined
as integer types according to ANSI. Unfortunately, an integer has different size in the
two systems. It is impossible to change the data type of enumerations in the current
development IDE VC++. However, the latest MS .Net C# does provide a mechanism
to customize the size of enumeration data types.

The NC data type is converted in the simulation according to the following table.
Those data types not listed in the table are not converted.

unsinged| long int -> uintlé
unsigned| 1long -> uintlé
unsigned char -> uintlé
signed long int C-> intlé6
‘long int -> intle
unsigned| short int -> uints
unsigned| short -> uints8
unsigned int -> uints8
signed char -> int8
char -> int8
signed short int -> int8
signed int -> ints8
short int -> int8
int -> int8
unsigned s32_type -> uint32
s32_type -> int32

Table 1. Data Type Conversion Table.

4. Initial Value

Variables and timers usually are assigned an initial value in the application program.
The initialization of the data in the simulation is a little different due to the
implementation in a class. The variables are defined in the class and initialized in the
class constructor. For the variable without an initial value, a value 0 is assigned to it.

- For the user may assume a default value of 0. Some variables, such as a timer variable,

are initialized in the function to reset the node. Some variables may be assigned a value
in the application program or by a network management message update. The
initialization in these cases is discussed later.
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5. Network Variables

A network variable is defined in the translated code in the same way as a common
variable. The initial value of network variables is set to 0 unless another value is
specified in the application program.

The network variable array is defined as one variable. But they are connected as
individual variables and each has its own selector. According to the implementation of
the selector assignment, each element of a network variable array is defined separately
in the translated code and added to the node using the AddNV () function individually.
The first element definition is the same as the network variable array, using the array
size. However the remaining elements should be defined as common network
variables, following the first element.

When a network variable is updated in the application, it will be propagated to the
channel during the critical section that immediately follows the variable update. If a
network variable is updated more than once in the application it is only propagated
once. In the application, a flag is introduced for each network variable. Whenever a
network variable is wupdated, the corresponding flag is set. A function
PropagateNV () is used in a critical section to propagate the network variables with a
set flag .

Timer

The timer is defined as MsTimer or sTimer representing a millisecond timer and a
second timer respectively. The timer variables are initialized using the SetMsTimer ()
or SetTimer () functions. A timer is usually initialized in a reset function. However
a timer may be initialized when declared. The function TimerEvent () is introduced
to handle timer expiration events and to restart repeating timers. The TimerEvent ()
function detects the expiration of a timer and sets the timer expiration event. For
repeating timer, the function also resets the timer to its initial value. The application
simulation repeatedly calls this function to update timers. The API function
timer expires() will look up the timer expiration events to determine whether a
timer has expired. These functions are described later.

EEPROM

If any variable is defined as eeprom storage class, it is not initialized in the application
program but by the network management tool. The values of this kind of variables are
stored in the EEPROM of a Neuron chip and preserved even while the node is powered
down. Variables defined in eeprom storage class usually are used to store a node
application configuration. A network variable configuration tool can be used to modify
these variables. The network configuration tool can display the value of a network
variable and make modification to it. The user can use the network configuration tool to
assign values to eeprom variables.




8. when Statements

The main body of the application program in NC is formed by when statements. This
part of the NC code is translated and placed in a function called Run (). NC when

statements are translated to i f statements and switch statements in the C++ version to
implement the scheduler.

Example: Neuron C Conversion
The Original Code:

#include “fileA.h"”
#define Constant A 20
#define Constant_B 3.75

typedef struct
{

}TypeA;

TypeA var_ A;

bool eeprom var_ B;

network output int nvo;

network input SNVT_ temp f nvi;

mtimer repeating sample timer = Constant A;

when (Condition_A)
{

Code_A;
}

when (Conditon B)

{
Code_ B;
}

void Function A()
{ Code C; }

The Translated Code:

class Appgmn : public CDevice
{

public:
CAppgmn (IDeviceAPI * pIAPI,uint8 uid);
~CAppgmn () ;

protected:

typedef struct

104



}TypeA;
void Function A();

TypeA var A;

bool var B;

uint8 nvo; bool b _nvo;
float nvi;

Mstimer sample timer;

void Init (NVDefinition *pNvdef);
void Run();

void PropagateNV();

void TimerEvent();

}

CAppgmn: : CAppgmn (IDeviceAPI * pIAPI,uint8 uid)
CDevice (pIAPI,uid)
{}

void CAppgmn::Init (NVDefinition * pNvDef)

{
CDevice::Init (pNvDef);

m nvDef[0] .nvLength=sizeof (nvi);
m_nvdef[0].varAddr= pNVArray[0]=&nvi;
b nvo = false;

memset (&var A, 0, sizeof(var_A));
memset (&var_B, 0, sizeof(var_B)):;
memset (&nvo, 0, sizeof(nvo)):
memset (&nvi, 0, sizeof(nvi));

sample_timer = 20; // Constant A is replaced by its
value.

}

CAppgmn: :Run ()

{
WHEN RESET {}

START_ WHEN (Condition A)
{
Code_A;

} .
WHEN (Conditon_ B, 2)
{
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Code_ B;

END_WHEN
}

void CAppgmn: :PropagateNV ()
{
if (b_nvo) {
Propagate (&nvo) ;
b _nvo = false;

}

void CAppgmn: :TimerEvent ()
{
if(MsTimerExpired(&sample_timer))
{
expired_timer([0]=& sample timer;
SetMsTimer (&sample_timer,
sample timer.setTimerValue);

}
}
CAppgmn: : Function_ A()
{

Code C;
}

Scheduler Simulation

There are two kinds of when clauses the scheduler manages. The first one is priority when,
the other is the common when clauses. The translation of the when clauses from Neuron C
is specified in the previous section. Refer to the examples for translation details.

For priority when clauses, the clause that appears first in the code always has a higher
priority than those that appear below it. (See Neuron C Reference Guide for more
information.) The scheduler for a priority when statement and a reset event statement is
implemented using if..then statements as follows:

if (reset) {
code 0;

}
else if (conditionl)
code 1;

}
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For common when clauses, the scheduler works in a round-robin style and each when
clauses competes each other. The scheduler checks the conditions of all the when clauses
in the application program. Each time only one of the when clauses whose condition is
satisfied can be executed. Thus the scheduler implementation uses switch statement.

else {
switch (count) {
case 0:
count++;
if (condition2) {
code 2;
break;
}
case 1:
count++;
if (condition3) {
code 3;
break;

case n:
count++;
if (conditiond) {
code 4;

}

count = 0;
}

The above code can be made more readable and made to look more like the original
Neuron C code by using macros. These macros are defined below.

#define WHEN_RESET if (reset)

#define PRIORITY_WHEN(condition) else if (condition)

#define START_WHEN(condition) else { switch(count) { case 0: count++; if (condition) {
#define WHEN (condition, n) break;} case n: count++; if (condition)
{

#define END_WHEN } count = 0; }}

Using the macros to replace the long and tedious code in the previous example produces a
more succinct and much more readable format for the programmer. The converted code is
listed below.

WHEN RESET {
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code 0;

}

PRIORITY WHEN (conditionl) ({
code 1;

}

START _WHEN (condition2) {

code 2;
}
WHEN (condition3, 1) {
code 3;

}

WHEN (conditiond4, n-1) {
code 4;

}
END_WHEN

Timer and Expiration Handling Functions

Timers are used in the device application to keep track of time. The timer implementation
belonging to a given thread, for example an application program or the stacks, is updated
based on the global simulation time rather than the local clock. The global simulation time
evolves according to all the updates of the local simulation clocks of the threads. Different
threads are executed at different time points in terms of simulation time. Thus the
evolution of the global simulation time is generally finer than any given thread making
smaller time increments with each step. Since the simulation can take care of a timer
expiration event once at a clock update event, and a timer may expire at any time during
the interval of a simulation clock updates, clearly setting or checking the expiration of a
timer according to a timer with finer granularity results in a high accuracy simulation. The
simulation guarantees that every time the simulation time gets updated the timers are
checked.

The simulation provides functions such as SetMsTimer (MsTimer *timerOut,
uint32 valueln) and MsTimerExpired (MsTimer *timer) to set a timer or check
the timer state. The void TimereEvent () function uses these functions to update a

timer and to check its expiration event in the device application simulation. If a repeating
timer expires, this function starts the timer again.

The Neuron C code has an event called timer expires[(timer-name)] to check a
timer expiration event. To support this feature, the simulation tool provides an array
MsTimer *expired timer([80] for each device to store the address of each expired
timer. The upper bound number of timers in a device is 80, which is the size of the array.
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We may use dynamic memory allocation to optimize the size of this array later. The
translator will read the application program to determine how many timers the application

uses and generate a function called void TimerEvent (). The format of this function is

void CAppgmn::TimerEvent ()
{
if (MsTimerExpired(&timerl)) {
expired timer[0] = &timerl;
// timerl is a repeating timer.
SetMsTimer (&timerl, timerl.setTimerValue);

}
if (MsTimerExpired(&timer2)) {
expired timer([l] = &timerl;

}

if (MsTimerExpired(&timerk)) ({
expired timer[k-1] = &timerk;
// timerk is a repeating timer.
SetMsTimer (&timerk, timerk.setTimerValue);

timerl, timer2, ... and timerk are the different timers; setTimervValue is the
assigned value of a timer. If a timer is a repeating timer, the timer needs to be re-started

| again whenever it expires. If the timer is not a repeating timer, the line
SetMsTimer (&timerk, timerk.setTimerValue) isnotneeded.

The simulation API provides two functions to handle the timer expiration event. They are
| Boolean timer expired() {}
| Boolean timer expired(MsTimer &timer);

The first function corresponds to the unqualified timer expires event. The function
will search through the expired timer[] array to see if there is an entry with a valid
address having an expired timer. If so, the function returns t rue. Otherwise, the function
returns false.

The second function is to replace the qualified timer_ expires event. The function
checks the expiration of a given timer. The function will look for the entry of
expired_timer[] with the same address as the given timer. If an entry is found, the
function clears that entry and returns true, otherwise it returns false.

Network Variable Definition

The network variables are defined in the application program. The automation tool needs
to read the definitions in the network design and makes it available to the simulation tool.
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Thus it is necessary for the automation tool to search the network variable definitions and
import them into the network definitions. The automation tool searches the network
variable defined in the application program and all its attributes in the LNS database, and
then stores the definition in the file Nv. FMT. The format of the file is

//Subnet id
//Device id
priority,direction, selector hi,selector_lo,turnaround, service
,authen,0,0,0,0x80,0x30,0,0,0,0,"Out™, "OutSD",NULL, addr_index

//Device id

The NV definition starts with the subnet id and device id. These ids define the device the
following NV definition belongs to. A NV definition includes priority, direction, selector
number, turnaround flag , service type, authentication flag, and address table index. The
other values in the middle of the NV definition are not used. The flags, such as priority,
turnaround, ad authentication, use 1 for true and 0 for false. The direction flag uses 1 to
represent outgoing NV and 0 for incoming NV. Refer to the nv_struct definition in
LonWorks Technology Device Data book and NVDefinition defined in GadgetStack
API Functions Reference for more details.

Network Variable Propagation

When a network variable is updated within a when clause in the application code, the
propagation of this NV is scheduled after the present critical section. In other words, the
NV is not sent out immediately, but waits until the Neuron Chip finishes execution of the
user application program. In simulation, the way a NV is propagated is imitated by
introducing a flag for each NV, indicating if propagation is required or not.

When translating the application source code. A flag is inserted in the code.
int ©NVO; bool b_NVO;

The flag is set to true at every place an update of this NV occurs.
NVO = value; b_NOV = true;

A function is introduced for a device to propagate all the NV after the critical section. The
function void PropagateNV () is defined as

void PropagateNV ()

{
if (bNVO) {
Propagate (&NVO) ;
BNVO = false;
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}

This function is defined as the member function of a device application class.

Plant Simulation Process

Similar to the application program, the LonTalk simulation supports more than one plant
simulation. In addition, we assume that each plant runs by itself but it is possible that
different plants share the same simulation code to simulate identical physical plants. In the
simulation we limit the total plant simulation to a constant M. But the total number of plant
simulations does not have an upper bound. Each of the plants is defined in a class.
Therefore, no matter how many plants are actually specified by the user, there are M plant
classes defined in the application.h header file. They are identified by the number m at
the end of the class name (m is a number from 1 to M). An unused class is defined as a
class that has no member variables and no member functions. But they have one
constructor with the same argument according to the simulation requirement.

class CPtpgmm: public CPlant
{
public:
CPtpgmm(IPlantAPI * pIAPI,uint8 uid):;
}i

CPtpgmm:: CPtpgmm(IPlantAPI * pIAPI,uint8 uid)
: CPlant (pIAPI,uid)
{}

If the user defines a plant and provides the simulation code, the complete plant simulation
class looks like the following:
class CPtpgmm : public CPlant
{
public:
CPtpgmm (IPlantAPI * pIAPI,uint8 uid);
// ~ CPtpgmm() ;

protected:
bool Init();
bool UnInit();
bool Run();

//define variables here.

}:

CPtpgmm:: CPtpgmm (IPlantAPI * pIAPI,uint8 uid)
CPlant (pIAPI,uid)

{}
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bool CPtpgmm::Init ()

{
fDeltaT = (double)..;//the simulation update period.
// initialize other variables here.

Return TRUE;
}

bool CPtpgmm: :UnInit ()
{
// clear data here.

return TRUE;
}

bool CPtpgmm: :Run ()
{
// the simulation code.

}

The format of the plant simulation source file should be defined with the following format.

// include header files
#include “includedFile.h”

// define constant
#define const_1;

// define plant simulation variables
double state_1;
double state_2;

// some other initialization code.

// define plant simulation
bool main ()
{

// simulation code.

return TRUE;
}

// define un-initialization function.
bool UnInit ()
{

// clear memory allocation.




1.

Return TRUE;

1/O Definition

Device 1/O object and Access Functions

I/O object is defined for up to 12 I/Os: 10 0, ..., 10 11. These I/O objects are
associated with each of the individual I/O values of the device simulation. I/O
functions are defined to access these I/O objects:

float io_in(I0);
void io_out(IO);

The parameter 10 in the functions are any of the I/O objects. A float value is returned
when calling the io_in(I0) function. If the IO is defined as a digital I/O, the
returned value is either 1.000, or 0.000.

Plant I/0O and Access Functions

The plant I/O values are defined in the network configuration tool. A variable is
assigned to each I/O and the input/output type is also specified for the I/O Two /O
access functions are defined:

float GetInput(const uint8 &idx),and

void SetOutput(const float &data, const uint8 &idx).

They are used for input and output respectively. For input function, the returned value
updates the related variable. For output functions, the data parameter refers to the
related variable. The parameter idx in both functions are the index of the buffer entry
in the network interface, where the I/O data is buffered when sent between a device and
a plant. The indexes are defined in a configuration file i0.x1s.

SmartControl I/O Definition

The selection of the network device is limited to Smart Control devices. The IO
implementation is developed as a generic model, so that the implementation of different
devices is very similar. There are a total of 11 I/Os available for Smart Control
devices. The definitions of those I/Os are:
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Index | Name Type Corresponding Function Function
Parameter
0 I0 1 Relay io_out(relayl, RELAY ON) rdayl
1 I0 2 Relay io_out(relay2, RELAY ON) relay2
2 I0 3 Relay io_out(relay3, relay3
RELAY OFF)
3 | 10_4 | Digitall/O N/A N/A
4 | 105 | Digital /O N/A N/A
5 I0_6 ‘Anﬂog(huput adrllx da(0,data) 0
6 I0 7 Andog(hﬂput adrllx da(l,data) 1
7 I0_8 Analog Input adrllx ad(0,data) 0
8 I0_9 Analog Input adrllx_ad(1l,data) 1
9 IO 10 [hﬁvmsﬂlnput adrllx ad(2,data) 2
10 | I0_11 | Universal Input adrllx_ad(3,data) 3

Table 1. Smart Control I/O Definition.

I0_1 to I0_11 are I/O names. Refer to the User’s Manual for Smart /O™ ADRI110
and ADR112 Programmable Multifunction /O Modules for the 1/O definition. Each
I/O is associated with an index value from 0 to 10. In the simulation the indices are
used as the identification of an I/O. The translator will interpret the I/Os that the /O
functions interact with in terms of these indices. The next section will describe in detail
how the interpretation is handled.

Network Interface Update Functions

When the control network simulation includes a plant simulation, the interaction between
the plant and the devices use the network interface. The interface has a float type array.
Both the output of plant simulation and device simulation are fed into the entries of the
array. The inputs of the plant simulation and device simulation also read values in these
entries. In the simulation code the network interface can be accessed in an application
program as:

m_pNetwork->m fDatal]

For the device simulation, 12 variables are defined corresponding the 12 I/Os in a device.
The defined variables are float fvar[0-11]. The examples of update /O are listed
here:

1) Update fvar[1] with the value of the 6th entry inm_fData
m_pNetwork->m fData[5] = fVar[l];




2) Update input £fvar (5] from 7% entryinm fData
fvar[5] = m_pNetwork->m fData[6];

A synchronization algorithm that runs at the highest level of the network simulation
governs the simulation program’s execution of plants and devices. In both a plant
simulation and a device simulation program the I/O is updated based on the
synchronization algorithm. The I/O updates described above are defined in the following
two functions:

void UpdateInput ()

void UpdateOutput ()

The two functions are defined as a member function of both the CP1ant and CNodeApp in
the simulation code. The first function updates the inputs of the device and the second
function updates the output of the device. The translator will write the related I/O update
code into these two functions. The location of the UpdateInput () and UpdatOutput ()
are depend on the synchronization algorithm. When the synchronization algorithm decides
to update the I/O, these two functions are called respectively.

The configuration tool gathers the interface configuration and generates a file 10.x1s.
The 10.x1s file specifies the I/Os of every device and plant, and designates the entry of
the buffer array for each I/O to read/write. The I/O update functions use this file to
determine the indexes of connected ports and update the I/Os in the way as shown in the
examples above.
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APPENDIX II : DEVICE APPLICATION SIMULATION API
back

The LonTalk Network Simulation supports network device applications. The device
application simulation is designed in such a way that the user can debug their device
application(s) during a simulation. However the simulator only supports C++ style code.
In the LonTalk Network Simulation Configuration Tool, an NC-to-C Translator is used to
translate a NC application program to the C++ style code. To make the translated device
application code readable, the LonTalk Network Simulation provides an Application
Programmer Interface (API), which supports most important NC program features.
Therefore, the translated device application may still keep the NC format, which is familiar
to the user.

1. Implementation Structure

The simulation code can simulate multiple network devices in one processor. The
application programs of all the simulated devices are implemented in a thread. A
simulation controller synchronizes the threads to execute their simulation tasks according
to the simulation time evolution of each thread.

The device application simulation implements a set of functions for a device application.
These functions are listed below:

void Init (NVDefinition *pNvdef);
void Run{();

void PropagateNV{():;

void TimerEvent():;

The function void Init(NVDefinition *pNvdef) is called during the device
simulation initialization. In this function, the network variable definitions are loaded and
variables and timers are initialized according to the device application code.

The function void Run () executes the device application. The thread calls this function
every time the simulation controller activates it. As the result of the function call, the
simulation time of the simulated device will increase based on the time cost for the
simulated event.

The function void PropagateNV () propagates network variables that are updated in the
device application. In a LonWorks device, when a network variable is updated or assigned
a new value, it will be propagated to the channel during a critical section immediately
following the variable update. When a network variable is updated, it is not propagated
immediately, but waits until the current iteration of the device application finished. The
function void PropagateNV ()is included in the critical section that follows the void
Run () function to simulate the network variable propagation.
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The function void TimerEvent () maintains the application timers. In this function, the
timer is updated according to the current simulation clock, and timer expiration is handled.
If a timer is defined as a repeating timer, the timer will reset to its initial value. This timer
function is called more frequently than the others in a thread.

2. Data Type

Data types are supported in the configuration tool in a way similar to NC. Data types
related to the API are defined based on the network variable type definition in the Neuron
C Programmer’s Guide Revision 7. Standard network variable types are also supported, as
well as user defined data types. The user defined network variable type or data type may
be defined in the same file where the device application is defined. If a type is developed
using the LonBuilder Resource Editor, a manual input is necessary to define the type again
in a file and include this file as a header file in the device application file. During a

translation process, the data type in Neuron C is converted to the appropriate data type in
C++. ‘

3. Scheduler

The scheduler executes the application program in response to the condition specified in
the when clauses. The simulated scheduler assumes the default scheduling algorithm is
applied. There are three types of when clauses: the special when clauses, the priority when
clauses, and the non-priority when clauses.

The special when clauses have the highest priority and are taken care of immediately.
These events include reset, offline, wink, etc. When clauses with these events are checked
first. If any event is true, the first one in the list will be executed. After executing the task,
the scheduler goes back to the beginning.

The priority when clauses are checked after the special event when clauses are checked.
The scheduler handles the priority when clauses the same way as the special event when
clauses in that the first event that evaluates to true is executed first.  Therefore, the
implementation of the special event when clauses and priority when clauses is coded with
if..else if..else constructs. For example, the following Neuron C code can be
implemented into the code that follows it.

when (reset)

{
taskl;
}
priority when (conditionl)
{
task2;
}

priority when (condition2)
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{
task3;

}

The scheduler implementation for this code is:

if (reset)

{

taskl;
}
else if (conditionl)
{
task2;
}
else if (condition2)
{
task3;
}

For non-priority when clauses, the scheduler works in a round-robin style and each when
clauses competes with the others. The scheduler checks the conditions of the when clauses
in the application program. Each time only one of the when clauses whose condition is
satisfied can be executed. Thus the scheduler implementation uses a switch statement. For
example, a code with a non-priority when clauses is defined as following:

when (condition2)

{
code 2;
}
when (condition3)
{
code 3;
}

when (conditiond4)
{

code 4;

}

The simulation code for the scheduler to implement the source code above is:

else {
switch (count) {
case 0:
count++;
. 1f (condition2) {

118



code 2;

break;
}
case 1:
count++;
if (condition3) {
code 3;
break;
}
case n:
count++;
if (conditiond) {
code 4;

}

count = 0;

}

Further, the awkward code can be beatified with macros to make it more similar to the
original Neuron C code. The macros are defined below.

#define WHEN_RESET if (reset)

#define PRIORITY_WHEN(condition) else if (condition)

#define START WHEN(condition) else { switch(count) { case 0: count++; if (condition) {
#define WHEN (condition, n) break;} case n: count++; if

(condition) {

#define END WHEN } count = 0; }}

Using the macros to replace the long and tedious code in the previous code examples

produced a succinct and much more readable format for the programmer. The converted
code is listed below.

WHEN_RESET {
code 0;

}

PRIORITY_WHEN(conditionl) {
code 1;

}

START _WHEN (condition2) {
code 2;

}
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WHEN (condition3,1) {
code 3;

}

WHEN (condition4,n) {
code 4;

}
END_WHEN

4. Events

Most conditions are based on certain events. All the events fall into five classes. They are
system wide events, input/output events, timer events, message and network variable
events and user specified events.

In the application program interface, only the timer events and message and network
variable events are supported. (Some system-wide events may be supported in the future;
I/O events may also be developed in the future.) The user-specified events are supported as
long as the Boolean expression is available and valid.

4,1 Timer Event

The functions bool timer expires(), bool timer expires(mtime timer) and

bool timer expires(stimer timer) are defined to check timer expired
events.

The function bool timer expires() returns true if any of the defined timers expire. It
is equivalent to the NC event timer expires. The functions bool
timer expires(mtimer timer) and bool timer expires(stimer timer)
check the specified timer and return true when the timer expired. Once an expired timer is
checked, the expiration flag of that timer is reset.

The function MsTimerExpired (MsTimer *timer) is used to check the expiration of a
timer. SetMsTimer (MsTimer *timerOut, uint32 valueIn) can start a timer by
setting the timer value. This function can be used to initialize a timer in an initialization
function. It is used in the function OnTimerEvent () to reset a repeating timer when the
timer expires.

4.2  Message and Network Variable Events

The supported message and network variable events are:

nv_update_occurs
nv_update fails




nv_update succeeds
nv_update_completes
msg_arrives
msg_complete
msg_succeeds

msg fails
resp_arrives

All these events are updated automatically in the simulator. So of these events are
available for the application program directly. However the event functions with the same
name as the events above are not supported, for example, msg_arrives (uint8 code)
and msg_succeeds (MsgTag tag) are not available.

5. Functions

The following functions are supported in the API to process explicit messages.

msg_alloc()
msg_alloc_priority()
msg free()
msg_receive()
msg_send()

msg_cancel () is declared but not implemented.

The response/request functions listed next are also supported in the API.

resp alloc()
resp_cancel ()
resp free()
resp_receive ()
resp_send()

For the explicit message and request/response messages, the following variables are
declared.

msg_in;
msg_out;

resp_in;
resp out;

For network message pooling function po11 is supported as

poll ()
poll(intl6 nvIndexIn)
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The poll() is equivalent to the Neuron C function poll () without an argument. The
poll (intlé nvIndexIn) is same as the poll (network-var) in Neuron C.

For timer handling, the API provides three functions:

SetMsTimer (MsTimer *timerOut, uint32 valueln),
UpdateMsTimer (MsTimer *timerInOut),and
MsTimerExpired(MsTimer *timer).

SetMsTimer (MsTimer *timerOut, wuint32 valueIn) Iinitializes the timer
timerOut to valueIn. UpdateMsTimer (MsTimer *timerInOut) updates timer
timerInOut based on the present time. MsTimerExpired (MsTimer *timer) checks
the current value of the timer and determines whether it is expired. If the timer is expired,
the function return value is true, otherwise it returns false.

6. 1/0 functions

The 1/O object is defined for up to 12 I/Os: 10 0, ..., 10_11. These I/O objects are
associated with each of the individual I/Os of the device simulation. I/O functions are
defined to access these I/O objects:

float io_in(I0);
void io_out(IO0);

The parameter 10 in the functions are any of the I/O objects. A float value is returned
when calling the io_in (I10) function. If the I/O is defined as a digital I/O, the returned
value is either 1.000, or 0.000.

When using I/O objects and functions, the plant simulation is assumed to define in the
network simulation; and the used I/O objects are connected to the Plant I/Os. If these
device I/O objects are not connected to a plant 1/0, the reading from an I/O is the initial
value of the I/O, which is 0 by default. Other I/O related functions and events are not
implemented in the APIL.

7. Application Response Speed

The device application on a network device runs at a variable speed. The speed depends on
various aspects, such as the application computation load, number of when statements,
number of timers, and number of network variables. The timer event, network variable
update events, etc. are handled during the critical section between two iterations of the
device application. The application response time determines the response frequency that
the events are checked, which is critical for network performance.




The dynamics of the device application is difficult to simulate in a generic manner.
Nevertheless, the response time may be adjusted for each individual application based on
testing or estimation. The function void SetDeltaT (double t) is introduced to
change the response time. This function may be put into the device application code
wherever there is a need to change the default response time. Neuron C does not support
this function. Remember to remove this function before compiling the application.

The response time change effected with this function is only valid for the current
simulation step. The response time will be reset to the default value after the current
simulation step completes. To gain high accuracy, this function may be inserted in every
when clause. An effective alternative way is to use repeating timers to control application
activities and set both the timer and the response time, so that the timer value is longer than
the response time.
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APPENDIX III : DESIGN TOOL USER GUIDE
back
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1. Introduction

The LonSim LonWork® network analysis toolkit is a design tool for network
simulation, network traffic visualization, and analysis. It helps the network
designer to evaluate network message schemes based on a network design using
LonMaker 3.0 or more advanced versions. The software is designed to be
accurate, intuitive, easy to use, and user friendly.

The software accesses the LNS database to retrieve the network design and build
the network simulation automatically. The software provides network traffic
analysis tools for network performance evaluation and diagnosis. These
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capabilities are provided at the network level, as well as at the channel and device
levels.

These analysis tools enable the user to monitor the throughput and bandwidth
utilization of a channel, to identify the design bottlenecks, to identify vulnerable
devices or routers, to diagnose channel performance, and to trouble-shoot
messaging schemes and device applications.

The features of the software are:

1. Builds simulation scenarios automatically from a network design created
with standard design tools (e.g., LonMaker).

2. Supports any network topology and size of network compliant with the
EIA709.1 standard.

3. Provides simple interface to modify network designs and start network
simulations.

4. Provides a simulation progress clock and mechanism to run, pause, and
stop simulations.

5. Stores results of simulation runs for future review.

6. Provides comprehensive network traffic analysis tool to monitor network
traffic.

7. Supports multiple network analysis tools to monitor different channels at the
same time.

8. Provides a Network Traffic Monitor to compare channel traffic.

9. Provides a Network Analyzer to analyze network traffic details within a
channel and between channels.

10.Provides a Channel Analyzer to evaluate performance of a channel and its
devices.

11.Provides a Message Log Window for packet monitoring and recording.
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Figure 1.1. LonSim LonWorks Network Analysis Toolkit.
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2. Getting Started

System Requirement

Hardware Requirement
*  Windows 2000 is recommended.
*  Minimum 800 MHz CPU. 1 GHz AMD processor is recommended.
=  Minimum 256 MB RAM. 512MB is recommended.
* Minimum of 50 MB free memory.
Supporting Software
The following third party software is required
* LonMaker 3.0 or a more advanced version.
* NodeBuilder 3.0 or a more advanced version.
* Microsoft Visual Studio 6.0 or a more advanced version.
Refer to Appendix C for the Software Architecture and Dependency.
Initialization

For Windows 2000/NT:

1) Click Start from the taskbar.

2) Select Settings in the Start menu.

3) Click Control Panel from the submenu.

4) Open the Display in the Control Panel.

5) The Display Properties dialog is shown. Select the Effects tab.
6) In Visual effects check the Show windows while dragging.

7) Click the Apply button and then click the OK button.




3. Designing a LonWorks® Network

Design Overview

Generally, the LonWorks network design procedure should follow the
LonMaker manual and the Neuron C Programmer Guide.

Creating a Network

The general requirement of a network design is to comply with the LonMaker
user guide. The user designs the network topology, specifies the network
application, and binds the network variables. Since no physical network is
attached, it is not necessary to commission any devices.

The network design must meet the following requirements:

Only network variable messages are supported in the simulation. Connection
services are supported in a limited manner. This means that the user needs
to set the transaction timer, receiving timer, repeat timer, retry counter, and
repeat counter, for advanced connection services such as repeating
unacknowledged messaging, acknowledged messaging, or group messaging.
Do not set any timer or counter to automatic.

Creating a Device

All network devices are required to be programmable devices with user
defined application code written in Neuron C. Refer to next section to creating
Network Applications, for the requirements for device applications. When
creating devices, do not commission the device. (This network design tool will
not consume any LonWorks credits.)

Pre-programmed devices, such as LonPoint devices are not supported. In the
event that simulation of a LonPoint device is desired, use a programmable
device and provide a device application program in Neuron C that mimics the
functionality of the LonPoint device.

Creating a Channel

The Network Analysis Toolkit supports TP/FT-10, TP/XF-1250, IP-10L and IP-
10W channels.

There should be no device directly connected to an Ethernet channel. To
simulate an Ethernet channel with devices, add a LonWorks channel that
connects to the Ethernet channel. Add the Ethernet devices to the LonWorks
channel. To avoid burdening the channel in a heavy traffic situation, add one
LonWorks channel for each Ethernet device.
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Creating a Router

All routers are assumed to be configured routers.
Creating Network Applications
Creating a Device Application

The device application must be created in Neuron C using NodeBuilder. The
toolkit assumes the source code is located in the default directory specified by
NodeBuilder, namely where the project files are stored. NodeBuilder compiles
the device application and generates an .XIF file. The .XIF file is used to
define the device application in LonMaker. The toolkit uses the path of the
XIF file to locate the NC source file by default. If the default source file is not
found, VDCS will query the user to specify the source file. The toolkit uses the
source code directly to simulate a device, instead of the image files.

Special Requirements for Neuron C Code

The toolkit only supports limited features of Neuron C. Thus the device
application code should be programmed according to the Neuron C
Application Code Template. The template describes all the features the
simulation supports, and should be strictly followed in developing device
applications. The template is described in Appendix A.

For the current version, only network variables are permitted for
communication. Explicit messaging is not supported. Network variable types
defined in the NodeBuilder Resource Editor should be defined again in the
user.h file in the DeviceApp folder. The user code of the device application
needs to be in one file.

Format File

The toolkit supports network variable configuration to display and overwrite
network variable values. Please refer to Network Variable Configuration in
Chapter 4. The NV configuration requires a format file to correctly represent
the data of a network variable.

The format for standard network variable types and common data types are
already defined in VDCS_SNVT.fmt. The user needs to provide the format file
for user-defined types. The format file specifies the name of a network
variable type and its display format. A network variable type that is already
defined in the VDCS_SNVT.fmt file should not be defined in the user-defined

format file. For example, if there is a network variable type UNVT_TYPE
defined as:

typedef



{
int a;
int b;
} UNVT_TYPE;

The entry in the format file for UNVT_TYPE will be:
UNVT_TYPE: text(“%d %d");

Please also refer to the NB_SNVT.fmt file for the format of a format file. This
file is located in \LonWorks\types\ directory.

The default format file name is <network name>.fmt. The default location of
the format file is in the root of the network directory. For example, there is a
network named MyNet, and it uses the NodeBuilder project MyNetApp. There
is a folder MyNet in the directory: \Lm\Source\MyNet. The application is in the
folder \Lm\Source\MyNet\MyNetApp\. The format file MyNet.fmt should be in
the folder \Lm\Source\MyNet\. If the format file is not there, the toolkit will

show a warning when building the network simulation. In this case, the
~ network variable configuration for the network variables with the user-defined
type will not work correctly.




4. Simulating a Network

Building a New Network Simulation

The user may begin building network simulations with the toolkit once the
network and application designs are complete. To begin the process, run the
LonSim.exe application. The toolkit will open as shown in Figure 1.1 but
without any analysis tools. The only available command options for the user
are “New Simulation”, “Open Simulation”, and “Delete Simulation”.

The user can push the “New Simulation” button % in the tool bar or select the
menu item “Simulation > New...” to begin a new simulation. The New Network

Simulation dialog shown in Figure 4.1 will be displayed for the user to choose
the network for simulation.

MNew Network 5i1ulatibh ’

Figure 4.1. New Network Simulation Dialog.

As shown in Figure 4.1, all the LonWorks networks in the LNS database are
listed in the Network Database combo box. Select the network to be simulated
and press the “OK” button. The network simulation process will start. A
progress window will appear that states “preparing the network simulation ... *
and displays progress information.

Figure 4.2. Progress Dialog.




During the simulation building process, the software opens the LNS database
of the network specified in the New Network Simulation Dialog, and extracts
network definition information including network device templates, network
topology, network connections, etc. If the software cannot locate the
application NC source files, it will prompt the user to locate them. All the
information is saved into a single data structure. Then the network
configuration files are created based on this information. At the same time, the
NC2C translator scans the network application source files to create network
application simulation files and related application configuration files.

In the final stage, the software launches the MSDEV application in MS Visual
Studio to compile the network application simulation files using a predefined
project file. The compilation information is shown in the message pane. The
toolkit checks the progress of the build process and the status of the
compilation. Once the compilation finishes, the new simulation is opened
automatically.

Managing Network Simulations

The user can build a new simulation, open an existing simulation, save the
active simulation or deleted a saved simulation.

Opening a Simulation

To open a saved network simulation, use the “Open Simulation” button %& on
the toolbar or the “Simulation > Open...” menu item. The Open Network
Simulation dialog shown in Figure 4.3 will be displayed. Click the network to
be opened, and the network name will appear in the Network Name box. Then
press the OK button to open the selected network simulation.

Open Network Simulation

lHesistor Fanh

Figure 4.3. Open Network Simulation Dialog.




Closing a Simulation

Use the “Close Simulation” button &% on the toolbar or select the menu item
“Simulation > Close...” to close the network simulation. This will release the
current loaded simulation. It is not necessary to close the simulation before
building a new simulation or closing the program, as the simulation will be
closed automatically in those cases.

Saving a Simulation

When saving a simulation, click the “Save Simulation” button & on the toolbar
or use the menu item “Simulation > Save...” The Save Network Simulation
dialog shown in Figure 4.4 will be displayed. The style is the same as the
Open Network Simulation dialog. This function saves the current active
network simulation and is only available when a network simulation is active or
opened.

If you try to save a network with the same name as a previously saved network
simulation, you will be prompted with an option to overwrite the existing file or
change the simulation name.

# | onSim Test %Test 1
esistor_Fan E& Test2

outer Test
2 Steve Test 1

Figure 4.4. Save Network Simulation Dialog.
Deleting a Simulation
When deleting a network simulation, use the “Delete Simulation” button & on
the toolbar or select the “Simulation>Delete...” menu item. The Delete

Network Simulation dialog shown in Figure 4.5 will be displayed. Click the
network to be deleted and push the OK button.
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Figure 4.5. Delete Network Simulation Dialog.
Operating a Network Simulation
Once a simulation is open, the user can start the simulation, stop a simulation,
or pause a simulation. These commands are available in the toolbar and also
in the Operation menu. They are enabled after opening a network simulation.

Starting a Simulation

The network simulation is initialized when the user presses the “Start” button

on the toolbar. The simulation starts lmmedlately The simulation progress
clock is displayed in the toolbar.

Pausing a Simulation

The “Pause” button #¥ pauses a simulation. When a simulation is paused, the
simulation stops progressing and the CPU computation load drops to zero.
This makes it easy for the user to run another heavy-computation process
during a simulation. Pausing a simulation will not affect the simulation result.
The simulation will resume when the user presses the “Start” button.

Stopping a Simulation

The “Stop” button &
it remains loaded in memory and can be re- executed. However, the simulation
is completely re-initialized.  The stop function allows the user to start a
simulation over again.




Configuring Network Variables

The toolkit provides a network variable configuration tool to display and modify
network variable values. A format file is necessary to display network
variables in a recognizable format and to write new values to it correctly. For
standard network variable format, refer to the SNVT.fmt or NB_SNVT.fmt files
provided by LonWorks in the folder: \LonWorks\Types\. For network variables
of user-defined types, a user defined format file must exist in the folder of the
designed network. Refer to the Format Files section in Chapter 3 for format
file requirements.

Use the “NV Configure” button & on the toolbar or select the “Tool > NV
Configuration...” menu item to open the NV configuration dialog shown in
Figure 4.6. To display a network variable, select the channel, device and
network variable. To configure a network variable, the new value should keep
exactly the original format. Then press Configure button to update the value.

Metwork ¥ariable Congifuration

Figure 4.6. Network Variable Configuration Dialog.

The network variable configuration tool emulates the LonMaker Browser used
to modify a network variable. The LonMaker Browser sends a network
management message to a device to update a network variable. Similarly, the
network configuration tool puts a message event into the device event queue
when a network variable is updated. Thus, to avoid overflowing the queue,
only press the Configure button once.

137



5. Using the Analysis Tools

Four tools are available for network traffic analysis at different levels. The Network
Traffic Monitor displays general traffic loads throughout a network. The Network
Traffic Analyzer checks the traffic flow between channels as well as the traffic load
of each channel. The Channel Analyzer monitors a channel's general traffic
statistics and the activities of each device. The Message Log records all the
messages in every channel.

The simulation does not provide statistics for an Ethernet channel. Although
Ethernet channels are shown in the workspace and analysis tools, the statistical
data displayed is not valid.

Network Traffic Monitor

The Network Traffic Monitor provides the most general traffic information. It
helps the user to check the overall network traffic. It is the only analysis tool
automatically opened when a simulation is opened.

As shown in Figure 5.1, it displays the packet throughput and bandwidth
utilization of each channel. Two modes are selectable: cumulative and
instantaneous. The cumulative mode shows the statistics starting from the
beginning of the simulation. The instantaneous mode shows current statistics
compiled over a 2-second period of time. The Reset button allows the user to
restart the statistics, which clear all the data history.

Figure 5.1. Network Traffic Monitor.

Only one Network Traffic Monitor window is allowed to be open at one time. If
the Network Traffic Monitor window is closed, you can open it using the “Tool
> Traffic Monitor” menu item.

Network Traffic Analyzer

The Network Traffic Analyzer is used to analyze the traffic flow between
channels in order to identify over-loaded routers and to observe the direction
of traffic flow. It displays each and every traffic source of a channel and the

corresponding message volume. Use the Network Traffic Analyzer button
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in the toolbar or use the “Tool > Network Analyzer” menu item to display the
dialog box shown in figure 5.2. Only one Network Traffic Analyzer is allowed
to open at one time.

The Network Traffic Analyzer displays the number of channels, number of
devices, and the number of routers in a network. Similar to the Network Traffic
Monitor, the Network Traffic Analyzer has two selectable modes and a Reset
button. The selection between the two modes determines the statistic data
displayed in the window. The Reset button clears the statistic history. It will
reset all the statistics displayed in any open Channel Analyzer windows as
well.

Figure 5.2. Network Traffic Analyzer.

The lower part of the Network Traffic Analyzer shows the traffic information.
Each row displays the traffic flows into a channel, and other general
information. The first column from the left is the channel name. The first
column from the right is the bandwidth utilization of a channel. The second
column from the right is the total packet throughput. In the middle there are
packet throughput data from neighboring channels, as well as the total
throughput generated by the devices in a given channel. The channel names
are not listed for each column in order to provide a compact format. Instead
the labels ch1, ch2, ... are used. From left to right, they each correspond to
the names in the left first column from top to bottom.

For example, as shown in Figure 5.2, the value 0.0 in the first row and first
column is defined by IP and ch1. Since ch1 means channel IP, the value 0.0
is the throughput of devices in channel IP. The value in the second column of
the same row is defined by IP and ch2. The ch2 represents the channel
named LonTalk. The 59.5 value in that cell represents the throughput of the
router connected to channel LonTalk. The sum of these two values is the total
throughput of the channel IP.

Channel Analyzer

The Channel Analyzer provides a more detailed view of channel traffic
activities. A Channel Analyzer has three parts as shown in Figure 5.3. To the
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left is the channel general traffic statistics. To the right are the simulation time,
transceiver type, reset button and mode controls. At the bottom of the
Channel Analyzer are the advanced analysis tools.

: Packets
| Packet Rate

| Packet Size 14.0

| Collision 30
Collision Rate 6.90%
Bandwidth 23.12%

Figure 5.3. Channel Analyzer.

There are three different ways to open a Channel Analyzer. One method is to
use the menu item “Tool > Channel Analyzer”. Push the Channel Analyzer &
button in the toolbar is another way. When using these two methods a

channel selection dialog is open. Select the channel from the combo box and
press OK.

Channel Analyzer i

Figure 5.4. Channel Selection Dialog.

A fast way to open a Channel Analyzer is to use the floating menu in
workspace. Move the mouse over a channel or select a channel by left
clicking the mouse, and then click the right mouse button. A floating menu
appears. Then click Channel Analyzer. The Channel Analyzer of the selected
channel will be opened.
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Overall Statistics

The channel general statistics include cumulative data and instantaneous
data. The cumulative data shows the transmitted packet count, the packet
throughput, the average packet size, the collision count, the collision rate and
the bandwidth utilization. The instantaneous data shows the current packet
throughput, the current average packet size, the collision rate, and the
bandwidth utilization.

The Update Time is the time when the statistic starts. The txcvr type shows
the transceiver or channel media type. It can be TP_FT_10, TP_XF_1250,
IP_10L or IP_10W. If the channel type is not supported, Unsupported is
displayed. In this case, the simulation is not accurate or correct.

The Channel Analyzer also has two modes and a Reset button. The mode
selection works only for the Device Bandwidth Statistics. The Reset button
resets all the statistics for the channel. Notice, if a Network Traffic Analyzer is
open and the Reset button of a Channel Analyzer is pushed, the related
channel statistics in the Network Traffic Analyzer is reset as well. Try to avoid
this situation which may make the analysis tricky.

Device Bandwidth Statistics

The Device Bandwidth Statistics tab is one of the advanced analysis tools
provided as a part of the Channel Analyzer. It lists packet throughput and
bandwidth utilization of all the devices and routers in a channel. A progress
bar shows the bandwidth information graphically with a numerical value
followed at the end of the same row.

When selecting the Utilization option, the Device Bandwidth Statistics displays
the device utilization of the channel bandwidth.

Figure 5.5. Device Bandwidth Utilization.

When selecting the Contribution option, the device contribution to the total
channel bandwidth utilization is displayed as a percentage of the overall
utilization.
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Figure 5.6. Device Bandwidth Contributions.

Device Message Count

The Device Message Count is another advanced analysis tool. It displays the
count of scheduled messages in the device stack and the transmitted
messages from the transceiver. The lost message count and the lost
message rate are also calculated. Since there is a delay between the time
when a message is scheduled and the time when it is transmitted, there may
be a small number of lost messages shown in the tool, which do not
correspond to actual lost messages (they are still working their way thru
internal devices queues). This tool helps the user to evaluate the efficiency of
the device applications and the channel traffic load.

Figure 5.7. Device Message Count.

Message Classification Statistics

The Message Classification Statistics groups the channel messages according
to their service type and counts the messages for each group. The messages
are classified into 10 groups. The sum of all the counts of each group is the
total number of messages transmitted.




Figure 5.8. Message Classification Statistics.

Message Log Window

The Message Log is an analysis tool which functions as a protocol analyzer
logging all network messages. Typically, a protocol analyzer is attached to a
single network channel. Only the messages transmitted over that channel are
observed. The Message Log Window works differently. It displays the
messages from all channels of a simulated network. The messages are
displayed in the order of their timestamps (the time when a message appears
on a channel). As an exemption, the messages that go through an Ethernet
channel are not recorded in the Message Log Window.

Since the Message Log Window records every message throughout a
network, it is possible to trace a message as it makes its way thru routers from
one channel to another. Propagation delays between channels can be
computed by comparing the timestamps of each copy of the message in the
Message Log.

To open the Message Log, use the 4 button in the tool bar or select the “Tool
> Message Log” menu item. Figure 5.9 shows the Message Log Window.
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Figure 5.9. Message Log Window

The Message Log Window has two parts. The first part is a list of message
record that includes all transmitted messages in the order of their timestamp.
There are eleven (11) columns in the list. They are (1) message timestamp,
(2) message length, (3) the attribute flags, (4) transaction number, (5) domain
ID, (6) source address, (7) destination address, (8) message addressing mode,
(9) service type, (10) data, and (11) data size.

The attribute flag has three digits. The first digit is the priority flag; the second
one is the alternate path flag; and the third one is the authentication flag. For
each digit, a “1” means that the corresponding attribute is true, and a “0”
means that it is not. The transaction number is used for messages with
acknowledged service. The value is “-1” if there is no valid transaction number
in use. The source address is the network address of the source device, in the
format of Subnet/Node (S/N). Depending on the address mode, the format of the
destination address can be any of the four: (1) Subnet/Node, (2) Group, (3)
Subnet, (4) Node ID. The message data shows the hexadecimal value in a
small endian order: from left to right with the lowest byte going first.

The lower part of the Message Log Window shows details of a selected
message. Select one message by clicking one row in the message log list.
The message information will be displayed in the lower part of the Message
Log Window.

The message log is recorded as an .xls file. The file name uses the prefix of
NV_Log_ and appends the simulation start time to it. For example, if a
simulation started at 16:22 on Nov. 25th, 2003, the file name is
NV_Log_11_25_2003_16_22.xls. When closing the network simulation, the
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following dialog will open providing a choice for the user to save the file or
delete it.

Figure 5.10. Message Log Window Close Dialog.
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6. Debugging Device Applications

Device Application Simulation

When LonSim builds the network simulation, the device application simulation
is encapsulated in a dynamic link library (DLL) called DeviceApp.dil. In the
process of building a device application simulation, the device application code
that is programmed in Neuron C is translated into a C++ file before building
DeviceApp.dll. The format of the Neuron C file is kept with a minor
modifications to allow the user to recognize their code in the C++ device
application file. The source code of the DeviceApp.dil is provided for
debugging purposes.

In the DeviceApp.dll source code, each device template is implemented in a
class. During a simulation, when a device template is used by multiple
devices, DeviceApp.dll will implement an object of the class for each device.
The simulation will simulate these applications in threads, one thread for a
device. Each device uses the unique node id to distinguish each object.

During a simulation, LonSim will drive DeviceApp.dil to simulate the device
applications on each network device. DeviceApp.dil works as a server that
performs the device application simulation and provides simulation data.

Debugging Device Applications

To debug a network application simulation, the following procedure should be
followed:

1. Build a new network simulation with LonSim in debugging mode.
2. Save the network simulation.

w

Close LonSim. (Always close LonSim after a debug simulation is
built/opened.)

. Open the DeviceApp.dsp/dsw project in Visual C++.
. Start a debug session (F5) to launch LonSim.
. Open the saved network simulation in LonSim.

4
5
6
7. Open the Device ID Table in the Tool menu to look up the unique node ids.
8. In VC++, set desired breakpoints in the DeviceAppgm.cpp file.

9. Select Edit and open Breakpoints.

1

0.To debug application of a particular device, set the breakpoint condition to
“UNodelD==id"( id is the device unique node id).

11.Run the simulation and debug the application.
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Unlike the runtime version, the debug version of a network simulation has to
be built every time to debug a network application simulation. Although a
debug version of a network simulation is saved, it is only valid for debugging
when there is no other network simulation built or opened. Therefore it is a
good practice to re-build the debug version simulation every time before
debugging a network application simulation, even if the same simulation is
saved and there are no changes made to the network.

147



7. Advanced Topics

Application Response Time

The application response time is the time that an application in a device
spends to respond to an event and perform control actions. Any event with a
frequency higher than the pre-set response time will not be processed on time.
Many application-dependent factors influence the application response time.

Therefore it is impossible to precisely predict the application response time of
a device.

To simulate a simple device application accurately, it is recommended to use a
timer to control output messages. In the simulation, each device has a fixed
response time. The pre-set application response time is 10ms. To maintain a
high-accuracy simulation, a timer should be set at least to 20ms, which is twice
as long as the response time. Any event handling without a timer will be
processed at a 10ms interval. Make sure that at any time the device
application’s response time won'’t be faster than 10ms or slower than the timer
used.

For more complicated applications, an API function is provided to adjust the
application response time dynamically. The function is

SetDeltaT(const double &time);

Add this function at any exit point in the application source code, and provide
the time cost for the control action and the scheduler overhead as the
parameter. The response time change using this function is effective for the
current critical section. The response time will be reset to its default value for
the next critical section unless the function is called again. During one critical
section, only the last call of this function will actually affect the response time.
This function is not supported in NodeBuilder. So before inserting this function
into your application code, compile the application first. This function provides
the ability to dynamically change the application response time. The user may
estimate the response time for each control action or test the response time
with the network device.

More about IP Channels

The Ethernet simulation model is based on two assumptions:

1) The time delay for the transmission of a package is considerably shorter
than the LonWork router’s response time and can be ignored. This remains

valid when there is only a small number of routers attached to the Ethernet
channel and the traffic on the Ethernet channel is low.
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2) The Ethernet channel is used as a high-speed backbone and there are no
application devices directly attached to the Ethernet channel.

The simulation does not provide valid statistics for the Ethernet channel.
Although Ethernet channels are shown in the workspace and analysis tools, all
data are invalid except for the scheduled message count.

However, the scheduled message count for an Ethernet channel in the
Channel Analyzer is the total number of messages passed through the
Ethernet channel, instead of the count for each router. The transmitted
message count is always the same as the scheduled message count. But this
does not necessarily mean that all the messages are passed to the LonWorks
channel from the Ethernet channel.

Analysis Tool Dependency

Each analysis tool displays statistical data from a particular part of the
simulation module. The relationship between the analyzers and the simulation
module is shown in Figure 7.1. Some analysis tools refer to the same
simulation module, so that there is a dependency between certain analyzers.
For example, the channel module in the simulation also contains buffer module
for each device attached to it. The channel module and the buffer module all
hold a copy of the channel traffic information. The statistical data are
generated in these two kinds of modules. When a reset operation occurs, all
the data in a module are reset to their initial value. Therefore, if two analysis
tools refer to the same module, the reset action from one tool will affect the
other.
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Network Simulation Modal
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Figure 7.1. Relationship of Analysis Tools and Simulation Objects.

The Network Traffic Monitor and the Message Log Window refer to the data in
the channel module. The Network Traffic Analyzer and the Channel Analyzer
refer to the buffer module. Since each module has two analyzers referring to
it, the reset function of one analyzer will affect the data shown in another
analyzer that refers to the same module. This becomes an issue when using
the Network Traffic Analyzer and the Channel Analyzer. Once the Network
Traffic Analyzer is reset, all the Channel Analyzers are reset too. This may not
be a problem. However, when a Channel Analyzer is reset, only the
corresponding data in the Network Traffic Analyzer is reset. Therefore, the
statistics of different channels in the Network Traffic Analyzer are no longer
comparable. We do not suggest resetting a Channel Analyzer when a
Network Traffic Analyzer is in use.

Appendix A
Neuron C Device Application Template

// vdcs simulation application Neuron C source template.

//

150




// Version 1.0.0
// 09. 7. 2003
//

/[l +++++++++++ A+
//

// Comments

//
// this type of comment is supported.

/*
this type of comment is supported.
*/

[/ +++++++++++++++++++++++++ 4+ + 4+
//
// constant

//

#define CONSTANT 100

// global variables

//

// any NC data type is supported.

//

int value; // comment may go here.

// +++++ 4+ +++++
//

// structure and union

//

typedef struct

{
unsigned long day;
unsigned short hour;
unsigned short minute;

} time;

//+++ 4+ ++++++ o+




//
//
//

network variable definition.

network input int nvi; // comment may

go

here.

network output int nvo;
network output int nvo = CONSTANT;
network input int nvi_array[CONSTANT];

// Array network variable is not supported. Even the array

// network variable is defined, the array elements should

// be treated respectively. Refer to when template 5.

// Explicit message is supported, however address must be //
specified.

// +++++++++++++ A+ 4+
//

// timer definition

//

// the timer should be set larger than or equal to 10ms.

//

mtimer timer;
stimer timer;

mtimer repeating timer
stimer repeating timer

!/
//
//
//
//
/7
/7
//

//
//

value;
value;

++++F++++ A+t
when clauses
Predefined events are not supported except the complex

event.
io events are not supported.

when statement template 1.

when (reset)
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//
//

when statement template 2.

when (expression)

//
//

when statement template 3.

when (timer expires(timer))

//
//

when statement template 4.

when (nv_update_occurs(nvi))

//
//

when statement template 5.

when (nv_update_occurs(nvi_array[0]) ||

//
//
//
//

nv_update occurs(nvi_array[1]))

I S S S i e i s 2 S S S S S S S A S S S

function definition

void function (void) -

{
}

//
//
/7
//
/7
/7
//
//

//
//

+++++ A+t
non-global code template.

ANSI C expressions are all supported for non-global
expressions. Any one or any combination of the following
templates can be used in a when statement.

template 1: NV assignment
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nvo = value;

// template 2: timer assignment

//

timer = value;

[/ = = = = = = = = = = = - e - e - e - - - - - - - - - -
// Illegal Expressions

// Illegal Expression 1.

//

// Bny global expression in multiple lines is illegal.
// Global expression are the code not within any { }.

//

value =
CONSTANT;

// Illegal Expression 2.
//
// only one declaration is allowed in a line.

//

int valuel, value?2;

// Illegal Expression 3.
//
// Only one expression is allowed in a line.

//
valuel = CONSTANT; value2 = CONSTANT;
// Illegal Expression 4.

//

// nv_update occurs can't not check an nv array. refer to
// when statement template 3.
//

when (nv_update_occurs(nvi_array))
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// Illegal Expression 5.

//

// no static variable should be used.
//

static int wvalue;

// Illegal Expression 6.

//

// Predefined events are not supported.

//

when (offline)

// Illegal Expression 7.

//

// 1/0 operation is not supported.
//

io_update_occurs(io_1);

// Illegal Expression 8.

//
// un-qualified event is not supported
//
when (timer expires) // or

when (nv_update_occurs)

// Illegal Expression 9.
//
// function definition should be in the same line.

/7

void
func (void)

// Expression 10.

//
// { } should not be omitted.
//
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while(i < 0)
it++;

Appendix B
Software Architecture and Dependency

The Figure C.1 shows the software architecture and the relationship between the
toolkit and the supporting components and software. The GUI of LonSim launches
the Simulation Core together with the Device Application to perform the simulation.
Data are exchanged between the Simulation Core and the Device Application
during a simulation. The simulation data is retrieved by the GUI for display. Upon
building new simulations, the GUI starts the Simulation Generator which accesses
the LNS network database and also employs the NC2C Translator and the
MSDEV compiler to build the new simulation. The simulation configuration is
temporally stored and is made accessible to the Simulation Core.

LNS DB

NC Source | Simulation

vco‘nﬂg’uraﬁon' o

3

Simulation
Generator

NC2C
Translator

Figure C.1. Software Architecture and Dependency.
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APPENDIX IV: LNS Database

The LonWorks Network Service (LNS) is a multi-client network operating system for installing,
upgrading, and interacting with LonWorks networks. The LNS operating system employs a server
(the LNS server) to maintain various databases (the LNS databases), including a single global
database and a several network databases. The LNS global database contains general information
about all of the networks created by the user. Detailed information about each network—including
device configuration data—is maintained in individual LNS network databases. When a user
creates a network design using LonMaker, the global database is updated and a new network
database is created to store the network configuration.

LNS provides a common API to access the LNS database for programming LNS COM component
applications. The same API can be used to access LNS databases and retrieve network
configurations. VDCS makes use of this API to build the network simulation directly based on the
network configuration in a LNS database. In other words, VDCS re-creates the network design to
be simulated directly from the LNS database. The user only needs to define the network design
once—with the familiar LonMaker tool—and can use that single design in both the VDCS
simulation environment and with the actual hardware.

The previous version of VDCS required the manual duplication of the LonMaker network design in
a different environment. The new version of VDCS automates this process by generating a network
simulation based on the LNS database.




APPENDIX V: COM Technology

Component Object Model (COM) technology (e.g., Microsoft 2002) is a specification of a binary
interface for components and a set of services provided by operating system libraries to enable
modular, object-oriented, customizable and upgradeable distributed applications using a number of
programming languages. COM specifies the standards for creating interoperable components. A
COM component can be packaged in a module such as a Dynamic Link Library (DLL) or an
Executable (EXE) image. COM components use binary interfaces to communicate with other
modules or applications. The binary interface makes it possible for COM components to be
developed using different programming languages.

We applied COM technology to the VDCS test platform in order to improve software modularity.
By adopting COM, changes to an individual module will no longer affect other modules in the test
platform as long as the interface definitions remain the same. In fact, the other modules need not be
re-compiled. The new modular architecture promises to reduce the complexity of software
maintenance and upgrades, which are expected to grow as VDCS evolves to handle larger scale
systems.

The use of COM components also enables VDCS to execute various simulation scenarios during a
single user session. VDCS creates a DLL with the compiled user-application code for each
network simulation scenario. VDCS loads a network scenario DLL at run-time and links it to the
overall simulation engine. The users select which scenario they are interested in simulating and
VDCS loads the appropriate DLL. VDCS can guide the user to make modifications to device-level
application code; it can spawn a compiler to re-build a new simulation object (incorporating the
user’s application code changes); and it can then dynamically link to the new module in order to
execute the simulation and display the results. Before the COM architecture was adopted, users had
to terminate the VDCS program every time they made changes to the application code (the entire
simulation engine was recompiled).

Rebuilding VDCS using COM technology also provides a mechanism to create standardized
interfaces between applications. This feature allows us to integrate VDCS with third-party software
packages that simulate physical systems, such as fluid systems (e.g, FLOWMASTER,
SIMSMART). Since COM technology also supports different programming languages, future
VDCS development could be done in higher-level programming languages thus allowing enable
more rapid application development when execution speed is less critical (e.g., use of Visual Basic
for GUI development).
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